• Title/Summary/Keyword: Three-axis Spectrometers

Search Result 2, Processing Time 0.018 seconds

NEUTRON THREE-AXIS SPECTROMETRY AT THE ADVENT OF 21ST CENTURY

  • Kulda Jiri
    • Nuclear Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.433-436
    • /
    • 2006
  • The implementation of multiplexing techniques combined with advances in neutron optics make the neutron three-axis spectrometers (TAS) an efficient tool to map inelastic response from single crystals over momentum transfer ranges comparable to the size of a single Brillouin zone. Thanks to recent progress in polarization techniques such experiments can be combined relatively easily with neutron polarization analysis, which does not only provide unambiguous separation of response corresponding to structural and magnetic degrees of freedom, but permits a quantitative analysis of the magnetic response anisotropy, often of crucial importance to test theoretical predictions. In the forthcoming decade we therefore expect a further development of the complementary use, rather than competition, of the reactor-based TAS's with time-of-flight (TOF) instruments for single crystal spectroscopy at the existing (ISIS) as well as at the newly built (SNS, J-PARK) pulsed sources.

Recent Technological Advances in Optical Instruments and Future Applications for in Situ Stable Isotope Analysis of CH4 in the Surface Ocean and Marine Atmosphere (표층해수 내 용존 메탄 탄소동위원소 실시간 측정을 위한 광학기기의 개발 및 활용 전망)

  • PARK, MI-KYUNG;PARK, SUNYOUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.1
    • /
    • pp.32-48
    • /
    • 2018
  • The mechanisms of $CH_4$ uptake into and release from the ocean are not well understood due mainly to complexity of the biogeochemical cycle and to lack of regional-scale and/or process-scale observations in the marine boundary layers. Without complete understanding of oceanic mechanisms to control the carbon balance and cycles on a various spatial and temporal scales, however, it is difficult to predict future perturbation of oceanic carbon levels and its influence on the global and regional climates. High frequency, high precision continuous measurements for carbon isotopic compositions from dissolved $CH_4$ in the surface ocean and marine atmosphere can provide additional information about the flux pathways and production/consumption processes occurring in the boundary of two large reservoirs. This paper introduces recent advances on optical instruments for real time $CH_4$ isotope analysis to diagnose potential applications for in situ, continuous measurements of carbon isotopic composition of dissolved $CH_4$. Commercially available, three laser absorption spectrometers - quantum cascade laser spectroscopy (QCLAS), off-axis integrated cavity output spectrometer (OA-ICOS), and cavity ring-down spectrometer (CRDS) are discussed in comparison with the conventional isotope ratio mass spectrometry (IRMS). Details of functioning and performance of a CRDS isotope instrument for atmospheric ${\delta}^{13}C-CH_4$ are also given, showing its capability to detect localized methane emission sources.