• Title/Summary/Keyword: Three-Point Algorithm

Search Result 538, Processing Time 0.035 seconds

A Study on Three Phase Partial Discharge Pattern Classification with the Aid of Optimized Polynomial Radial Basis Function Neural Networks (최적화된 pRBF 뉴럴 네트워크에 이용한 삼상 부분방전 패턴분류에 관한 연구)

  • Oh, Sung-Kwun;Kim, Hyun-Ki;Kim, Jung-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.544-553
    • /
    • 2013
  • In this paper, we propose the pattern classifier of Radial Basis Function Neural Networks(RBFNNs) for diagnosis of 3-phase partial discharge. Conventional methods map the partial discharge/noise data on 3-PARD map, and decide whether the partial discharge occurs or not from 3-phase or neutral point. However, it is decided based on his own subjective knowledge of skilled experter. In order to solve these problems, the mapping of data as well as the classification of phases are considered by using the general 3-PARD map and PA method, and the identification of phases occurring partial discharge/noise discharge is done. In the sequel, the type of partial discharge occurring on arbitrary random phase is classified and identified by fuzzy clustering-based polynomial Radial Basis Function Neural Networks(RBFNN) classifier. And by identifying the learning rate, momentum coefficient, and fuzzification coefficient of FCM fuzzy clustering with the aid of PSO algorithm, the RBFNN classifier is optimized. The virtual simulated data and the experimental data acquired from practical field are used for performance estimation of 3-phase partial discharge pattern classifier.

A Study on Torque and Speed Control of Three Phase Induction Motor (3상(相) 유도전동기(誘導電動機)의 토크 및 속도제어(速度制御)에 관한 연구(硏究))

  • Choi, K.H.;Jeong, S.K.;Yang, J.H.
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.7 no.1
    • /
    • pp.111-126
    • /
    • 1995
  • In general, the electromagnetic transient phenomenon always exists in induction motor(IM) with the torque change. The control performance of IM is very worse than that of D.C motor owing to this transient phenomenon. So many studies about the elimination methods of the transient phenomenon have been making progress. Interesting methods of them are the Field acceleration method(FAM) and the method of impulse addition on the input voltage at the time point of torque change. In this paper, first, the circuit equation of IM is derived from the phase segregation method. The torque equation consisted of the stator and rotor currents is derived from the solving of the circuit equation. As we well known, the transient terms exist in this the torque equation. The method of impulse addition on the input voltage at the instance of torque change is confirmed theoretically for the elimination of the transient phenomenon. With the base on it, the author proposed a real time algorithm to eliminate the transient terms. The control system is consisted of the PI controller with the feedforward of torque change. The author could confirm that the quick stepwise responses of torque and speed can be obtained from response simulations.

  • PDF

Optimal Shape of Blunt Device for High Speed Vehicle

  • Rho, Joo-Hyun;Jeong, Seongmin;Kim, Kyuhong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.285-295
    • /
    • 2016
  • A contact strip shape of a high speed train pantograph system was optimized with CFD to increase the aerodynamic performance and stability of contact force, and the results were validated by a wind tunnel test. For design of the optimal contact strip shape, a Kriging model and genetic algorithm were used to ensure the global search of the optimal point and reduce the computational cost. To enhance the performance and robustness of the contact strip for high speed pantograph, the drag coefficient and the fluctuation of the lift coefficient along the angle of attack were selected as design objectives. Aerodynamic forces were measured by a load cell and HWA (Hot Wire Anemometer) was used to measure the Strouhal number of wake flow. PIV (Particle Image Velocimetry) was adopted to visualize the flow fields. The optimized contact strip shape was shown a lower drag with smaller fluctuation of vertical lift force than the general shaped contact strip. And the acoustic noise source strength of the optimized contact strip was also reduced. Finally, the reduction amount of drag and noise was assessed when the optimized contact strip was applied to three dimensional pantograph system.

Performance Estimation of Cross-Flow Fan by Numerical Method (수치해석적 기법을 이용한 횡류홴 성능 평가)

  • Kim, D.-W.;Lee, J.-H.;Park, S.-K.;Kim, Youn-J.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.152-157
    • /
    • 2002
  • A cross-flow fan is widely used on many industrial fields: a blower for the general industry, mining industry, automobile and home appliances. The design point of the cross-flow fan is generally chosen by based on the region within low static pressure and high flow rate. It relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice. However, it has low static pressure efficiency between $30\%$ and $40\%$ because of relative high impact loss. Recently, in the air-conditioning systems, the operating behaviors at the off-design points are highly regarded to broaden the application area for various air-cooling loads. Especially, at the low flow rate, there exists a rapid pressure head reduction, a noise increase and an irregular flow against a rearguider as a scroll of centrifugal fan. Numerical analyses are carried out for cross-flow fan including the impeller, the rearguider and the stabilizer. Numerical domains are discretized by hexahedral cells. Three-dimensional, unsteady governing equations are solved using FVM, SIMPLE algorithm, sliding grid system and standard k-$\epsilon$ turbulence model.

  • PDF

Building Points Classification from Raw LiDAR Data by Information Theory (정보이론에 의한 LiDAR 원시자료의 건물포인트 분류기법 연구)

  • Choi Yun-Woong;Jang Young-Woon;Cho Gi-Sung
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.469-473
    • /
    • 2006
  • In general, a classification process between ground data and non-ground data, which include building objects, is required prior to producing a DEM for a certain surface reconstruction from LiDAR data in which the DEM can be produced from the ground data, and certain objects like buildings can be reconstructed using non-ground data. Thus, an exact classification between ground and non-ground data from LiDAR data is the most important factor in the ground reconstruction process using LiDAR data. In particular, building objects can be largely used as digital maps, orthophotos, and urban planning regarding the object in the ground and become an essential to providing three dimensional information for certain urban areas. In this study, an entropy theory, which has been used as a standard of disorder or uncertainty for data used in the information theory, is used to apply a more objective and generalized method in the recognition and segmentation of buildings from raw LiDAR data. In particular, a method that directly uses the raw LiDAR data, which is a type of point shape vector data, without any changes, to a type of normal lattices was proposed, and the existing algorithm that segments LiDAR data into ground and non-ground data as a binarization manner was improved. In addition, this study proposes a generalized building extraction method that excludes precedent information for buildings and topographies and subsidiary materials, which have different data sources.

  • PDF

Application of a Multiobjective Technique for Optimum Operation of Pumps and Reservoirs in Service Water Transmission Systems (다목적 분석 기법을 이용한 상수도 송수계의 펌프와 배수지의 연계 최적 운영)

  • Ko, Seok-Ku;Oh, Min-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.738-743
    • /
    • 1991
  • A multiobjective analysis technique was applied for the optimum operation of pumps and reservoirs in service water transmission systems. Three major objectives were identified and assessed on the normally operating service water transmission systems. They are, 1) stability of pump operation; 2) economic point of view in minimizing the energy cost for pumping; 3) reliability in meeting the stochasticaly varying demands. The measures of these objectives were required times of pump on-offs in stability, required total energy cost in economics, and minimum required storage during the operating horizon in reliability. In order to find the best meeting solution to the decision maker, a set of non-dominated solutions which show the tradeoff relationships between the considering objectives were generated. The DM selects the best solution from this explicit tradeoff relationships using his heuristic decision rules or experience. The theory was verified by applying to the Kumi Service Water System. A combined technique of the ${\varepsilon}-constraint$ and the weighting methods was used to generate the nondominated solutions, and the dynamic programming algorithm was applied to find the optimal solution for the discretized multi-objective analysis problems.

  • PDF

FFT에 기반한 병렬 디지털 신호처리시스템의 성능분석

  • 박준석;전창호;박성주;이동호;오원천;한기택
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.3-9
    • /
    • 1999
  • This paper concerns performance of a parallel digital signal processing system. The performance of the system is analyzed in terms of CPU cycles required for 1024-point FFT computation. The number of cycles is estimated in three different approaches; FFT algorithm-based, assembly level source code-based, and probability-based. The results of analysis indicate that on a bus-based system the best performance for FFT is achieved with a single board. Because in some applications like FFT, where frequent data exchanges among processors occur, the number of communication cycles increases as the number of boards. It is observed that inter-board communication degrades overall system performance for the FFT computation. Also shown is that linear increase in performance can be obtained if multiple buses are employed.

  • PDF

A STUDY ON NUMERICAL SIMULATION OF TOWED LOW-TENSION CABLE WITH NONUNIFORM CHARACTERISTICS (불균일 단면을 갖는 저장력 예인케이블에 관한 수치해석적 연구)

  • Jung, Dong-Ho;Park, Han-Il
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.161-166
    • /
    • 2002
  • Low-tension cables have been increasingly used in recent years due to deep-sea developments and the advent of synthetic cables. In the case of low-tension cables, large displacements may happen due to relatively small restoring forces of tension and thus the effects of fluid and geometric non-linearities become predominant. In this study, three-dimensional (3-D) dynamic behavior of a towed low-tension cable with non-uniform characteristics is numerically analyzed by considering fluid and geometric non-linearities and bending stiffness. A Fortran program is developed by employing a finite difference method. In the algorithm, an implicit time integration and Newton-Raphson iteration are adopted. For the calculation of huge size of matrices, block tri-diagonal matrix method is applied, which is much faster than the well-known Gauss-Jordan method in two point boundary value problems. Some case studies are carried out and the results of numerical simulations are compared with a in-house program of WHOI Cable with good agreements.

  • PDF

A Design and Control of Bi-directional Non-isolated DC-DC Converter with Coupled Inductors for Rapid Electric Vehicle Charging System

  • Kang, Taewon;Kim, Changwoo;Suh, Yongsug;Park, Hyeoncheol;Kang, Byungil;Kim, Daegyun
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.429-430
    • /
    • 2011
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology with coupled inductors. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charging mode, constant-current mode, and constant-voltage mode. The pre-charging mode employs the staircase shaped current profile to accomplish shorter charging time while maintaining the reliable operation of the battery. The proposed system is able to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 67A. The optimal discharging algorithm for Vehicle to the Grid (V2G) operation has been adopted to maintain the discharging current of 1C. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system.

  • PDF

Analysis of Undertow Using$\textsc{k}-\varepsilon$ Turbulence Model ($\textsc{k}-\varepsilon$ 난류 모형을 이용한 해향저류의 해석)

  • Hwang, Seung-Yong;Lee, Kil-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.4
    • /
    • pp.357-368
    • /
    • 1993
  • With the assumption of the diffusion dominated flow, a numerical model has been developed for undertow and turbulence structure under the breaking wave by using the $textsc{k}$-$\varepsilon$ turbulence model. Undertow is a strong mean current which moves seqwards below the level of wave trough in the surf zone. The turbulence, generated by wave breaking in the roller, spreads and dissipates downwards. The governing equations are composed of the equation of motion with the period-averaged shear stress due to waves; $textsc{k}$- and $\varepsilon$-equations with the turbulence energy Production due to wave breaking. They are discretised by the three-level fully implicit scheme, which can be solved by using Thomas algorithm. The model gives good agreements with measurements except for the station that is closest to the breaking point.

  • PDF