• Title/Summary/Keyword: Three-Loop Autopilot

Search Result 3, Processing Time 0.02 seconds

Stability Analysis of Three-Loop Autopilot with respect to IMU Position and C.G Variation Rate in Guided Missiles (IMU 탑재 위치 및 유도탄 무게 중심 변화율에 따른 Three-Loop 조종 알고리듬 안정성 분석)

  • Kwon, Hyuck-Hoon;Kim, Yoon-Hwan;Park, Bong-Gyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.6
    • /
    • pp.492-501
    • /
    • 2016
  • Three-Loop autopilot is generally used for the acceleration control of guided missiles. Because the acceleration command to the three-loop autopilot is given as values at the center of gravity, feedback information of IMU should be obtained at the same position. However, the position of IMU might not be located at the center of gravity due to the sub-system assignment. This paper presents the stability analysis of three-loop autopilot with respect to the arbitrary position of IMU and variation rate of center of gravity. Gain and phase margins are calculated for several trim points for general anti-tank missiles.

Study on Missile Aerodynamic Characteristics with Three Loop Acceleration Autopilot Structure (3-루프 가속도 오토파일롯 구조를 갖는 유도탄의 공력특성 연구)

  • Kim, Yoon-Sik;Kim, Seung-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.8
    • /
    • pp.633-638
    • /
    • 2002
  • We study how the missile autopilot with three loop acceleration structure is related to the aerodynamic characteristics. First, the relationships between the response characteristics of wingless-tail controlled missile and aerodynamics are derived. Next the maximum allowable performance limit of autopilot and the design direction for a missile shape are indicated using the property of zero. The method proposed in this paper may give a help to the missile autopilot system design and determination of the shape of aerodynamic. Also, the validity of proposed method is demonstrated via numerical example.

Multi-Input Multi-Output Nonlinear Autopilot Design for Ship-to-Ship Missiles

  • Im Ki-Hong;Chwa Dong-Kyoung;Choi Jin-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.255-270
    • /
    • 2006
  • In this paper, a design method of nonlinear autopilot for ship-to-ship missiles is proposed. Ship-to-ship missiles have strongly coupled dynamics through roll, yaw, and pitch channel in comparison with general STT type missiles. Thus it becomes difficult to employ previous control design method directly since we should find three different solutions for each control fin deflection and should verify the stability for more complicated dynamics. In this study, we first propose a control loop structure for roll, yaw, and pitch autopilot which can determine the required angles of all three control fins. For yaw and pitch autopilot design, missile model is reduced to a minimum phase model by applying a singular perturbation like technique to the yaw and pitch dynamics. Based on this model, a multi-input multi-output (MIMO) nonlinear autopilot is designed. And the stability is analyzed considering roll influences on dynamic couplings of yaw and pitch channel as well as the aerodynamic couplings. Some additional issues on the autopilot implementation for these coupled missile dynamics are discussed. Lastly, 6-DOF (degree of freedom) numerical simulation results are presented to verify the proposed method.