• Title/Summary/Keyword: Three-Finger

Search Result 332, Processing Time 0.023 seconds

Examination of Various Metal Ion Sources for Reducing Nonspecific Zinc finger-Zn2+ Complex Formation in ESI Mass Spectrometry

  • Park, Soo-Jin;Park, Sun-Hee;Oh, Joo-Yeon;Han, Sang-Yun;Jo, Kyu-Bong;Oh, Han-Bin
    • Mass Spectrometry Letters
    • /
    • v.3 no.3
    • /
    • pp.82-85
    • /
    • 2012
  • The formation of zinc finger peptide-$Zn^{2+}$ complexes in electrospray ionization mass spectrometry (ESI-MS) was examined using three different metal ion sources: $ZnCl_2$, $Zn(CH_3COO)_2$, and $Zn(OOC(CHOH)_2COO)$. For the four zinc finger peptides (Sp1-1, Sp1-3, CF2II-4, and CF2II-6) that bind only a single $Zn^{2+}$ in the native condition, electrospray of apo-zinc finger in solution containing $ZnCl_2$ or $Zn(CH_3COO)_2$ resulted in the formation of zinc finger-$Zn^{2+}$ complexes with multiple zinc ions. This result suggests the formation of nonspecific zinc finger-$Zn^{2+}$ complexes. Zn(tartrate), $Zn(OOC(CHOH)_2COO)$, mainly produced specific zinc finger-$Zn^{2+}$ complexes with a single zinc ion. This study clearly indicates that tartrate is an excellent counter ion in ESI-MS studies of zinc finger-$Zn^{2+}$ complexes, which prevents the formation of nonspecific zinc finger-$Zn^{2+}$ complexes.

Chest compression efficiency for three methods of single-person rescuer infant cardiopulmonary resuscitation (1인 구조자 영아심폐소생술시 세 가지 가슴압박 방법의 가슴압박 효율성 비교 : 해양경찰교육원 신임경찰 교육생 대상으로)

  • Hwang, Soon-Jung;Yun, Jong-Geun;Kim, Jung Sun
    • The Korean Journal of Emergency Medical Services
    • /
    • v.24 no.3
    • /
    • pp.107-116
    • /
    • 2020
  • Purpose: We compared three chest compression methods to find an efficient method for performing infant cardiopulmonary resuscitation (CPR) for single rescuers and improving chest compressions quality. Methods: Thirty new marine police trainees at the Korea Coast Guard Education Institute were tested for five sessions using three methods of single rescuer infant CPR: two-finger chest compression, two-thumb encircling chest compression, and two-finger support chest compression. Results: The depth, accuracy, and number of compressions per minute of resuscitation were analyzed for the above three methods. The depth of two-finger chest compression, two-thumb encircling chest compression, and two-finger support chest compression was 3.53±0.20cm, 4.10±0.13cm, and 4.22±0.15cm, respectively. Accuracy was 23.86±12.59%, 54.11±10.8%, 71.55±18.81%, respectively, while the time for one cycle of 30 chest compression was 16.01±10.5 seconds, 16.45±0.85 seconds, and 16.56±0.91 seconds, respectively. Chest compression interruptions were 6.59±0.78 seconds, 7.17±0.37 seconds, and 6.97±0.35 seconds, respectively. The interruptions were consistent with the range of 5-10 seconds suggested by the American Heart Association. Conclusion: When one rescuer performs CPR for an infant in cardiac arrest, a comparative analysis of three methods showed that two-thumb encircling chest compression is the best for accuracy and efficiency of chest compressions.

A Study on the Motion Control of 3D Printed Fingers (3D 프린팅 손가락 모형의 동작 제어에 관한 연구)

  • Jung, Imjoo;Park, Ye-eun;Choi, Young-Rim;Kim, Jong-Wook;Lee, Sunhee
    • Fashion & Textile Research Journal
    • /
    • v.24 no.3
    • /
    • pp.333-345
    • /
    • 2022
  • This study developed and evaluated the motion control of 3D printed fingers applied to smart gloves. Four motions were programmed by assembling the module using the Arduino program: cylindrical grasping, spherical grasping, tip-to-tip pinch gripping, and three-jaw pinch gripping. Cap and re-entrant (RE) strip types were designed to model the finger. Two types of modeling were printed using filaments of thermoplastic elastomer (TPE) and thermoplastic polyurethane (TPU). The prepared samples were evaluated using three types of pens for cylidrical grasping, three types of balls for spherical grasping, and two types of cards for tip-to-tip pinch gripping and three-jaw pinch gripping. The motion control of fingers was connected using five servo motors to the number of each control board. Cylindrical and spherical grasping were moved by controlling the fingers at 180° and 150°, respectively. Pinch gripping was controlled using a tip-to-tip pinch motion controlled by the thumb at 30° and index-middle at 0° besides a three-jaw pinch motion controlled by the thumb-index finger-middle at 30°, 0°, and 0°, respectively. As a result of the functional evaluation, the TPE of 3D-printed fingers was more flexible than those of TPU. RE strip type of 3D-printed fingers was more suitable for the motion control of fingers than the 3D-printed finger.

The Effect of Frequency of Transcutaneous Electrical Nerve Stimulation (TENS) on Maximum Multi-finger Force Production

  • Karol, Sohit;Koh, Kyung;Kwon, Hyun Joon;Park, Yang Sun;Kwon, Young Ha;Shim, Jae Kun
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.1
    • /
    • pp.93-99
    • /
    • 2016
  • Objective: The purpose of this study was to investigate the effect of transcutaneous electrical nerve stimulation (TENS) treatment on maximum voluntary force (MVF) production. Methods: Ten healthy, young subjects (5 males and 5 females) participated in the study. MVF was recorded after a fifteen minute session of TENS stimulation under two conditions: low frequency (4 Hz) at maximum tolerable level and high frequency (110 Hz) at maximum tolerable level. TENS was provided simultaneously via self-adhesive electrodes placed on the finger pads of the index, middle, ring and little fingers. MVF was also recorded in a baseline condition with no TENS treatment. Data were collected in three different sessions on three consecutive days at the sametime of the day. Results: Results from the study show that on an average, MVF increasesby 25% for the index, middle and little fingers for TENS treatment with 4 Hz frequency as compared to the baseline condition. However, the 110 Hz condition did not result in a significantly different MVF than the baseline condition during individual finger pressing tasks. In addition, while producing MVF with all the four finger stogether, MVF was 30% higher for the 4 Hz conditionin comparison to the baseline condition, and 15% higher for the 110 Hz condition in comparison to the baseline condition respectively. Conclusion: The results suggest that stimulation ofafferent fibers onthe glabrous skinwith TENS could have a net facilitatory effect on the maximum motoroutput.

The Regulation of Stress Responses by Non-tandem CCCH Zinc Finger Genes in Plants (식물에서 non-tandem CCCH zinc finger 그룹 유전자에 의한 스트레스 반응 조절)

  • Hye-Yeon Seok;Md Bayzid;Swarnali Sarker;Sun-Young Lee;Yong-Hwan Moon
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.956-965
    • /
    • 2023
  • In plants, there are many CCCH zinc finger proteins consisting of three cysteine residues and one histidine residue, which bind to zinc ions with finger configuration. CCCH-type zinc finger proteins are divided into tandem CCCH-type zinc finger (TZF) and non-TZF proteins: TZF proteins contain exactly two tandem CCCH-type zinc finger motifs whereas non-TZF proteins have fewer or greater than two CCCH-type zinc finger motifs. The functions of TZF genes, especially plant-specific RR-TZF genes, have been well studied in several plants, whereas the functional roles of non-TZF genes have not been adequately researched compared to TZF genes. Many non-TZF genes have been identified as being involved in the responses to biotic and abiotic stresses, such as pathogen, high salt, drought, cold, heat, and oxidative stresses. Some non-TZF proteins bind to RNA and are involved in the post-transcriptional regulation of stress-responsive genes in the cytoplasm. In addition, other non-TZF proteins act as transcriptional activators or repressors that regulate the expression of stress-responsive genes in the nucleus. Despite these studies, stress signal transduction and upstream and downstream genes of non-TZF genes have not been sufficiently researched, suggesting that additional studies of the functions of non-TZF genes' functions in plants' stress responses are needed. In this review, we describe non-TZF genes involved in biotic abiotic stress responses in plants and their molecular functions.

Profile of phenolic compounds, antioxidant and SOD activity of millet germplasm

  • Lee, Myung-Chul;Choi, Yu-Mi;Yun, Hyemyeong;Hyun, Do-Yoon;Lee, Sukyeung;Oh, Sejong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.107-107
    • /
    • 2019
  • Millets are provided considerable amounts of nutrients and gluten-free cereal products and their rich non-nutritional compounds having proven health benefits, especially phenolic compounds. The aim of present investigation was to determine phenolic composition and antioxidant and SOD activity of three different millet of genetic resources namely, foxtail, proso and finger millet. Phenolic compounds were extracted from dehulled grain of genetic resources using methanol and examined for their total phenolic content (TPC), antioxidant activities and superoxide dismutase (SOD)-like activity. The TPC range of hog millet, finger millet and finger millet range from 3.3 to 25.1, 11.1 to 29.0 and 3.8 to 94.3 gallic acid equivalent (GAE)mg/g, respectively. Most of TCP content in dehulled millet grains was distributed from 10 to 20 gallic acid equivalent (GAE)/g, but two accessions of finger millet (IT235690 and 235689) were showed over than 90. The antioxidant activities were measured by 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity. Finger millet and hog millet showed 26.4% and 26.7% in the mean of DPPH scavenging activity percentage, but foxtail millet was 13%. The finger millet showed the higher value than hog and foxtail millet in superoxide dismutase (SOD)-like activity. Particularly, two accessions of finger millet (IT235690 and 235689) showed the highest phenolic content and antioxidant activities among the used millet genetic resources and will be primary resources for finger millet breeding to develop the appropriate breeding strategies.

  • PDF

Precise Control Law Design of Robot Finger Embedding Distributed Actuation Mechanism (분산 구동 메커니즘을 내장한 로봇 핑거의 정밀 자세 제어기 설계)

  • Shin, Young-June;Kim, Kyung-Soo;Kim, Soo-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.846-851
    • /
    • 2010
  • In this paper, we newly propose a novel control strategy of a three joints-robot finger for the purpose of artificial hands. The robot finger is specifically modeled by using a 3D CAD program (CATIA), considering human fingers, and then the proposed control method is verified through the dynamic simulation tool (Simulink and Recurdyn R2). Each slider is individually controlled to be located at the optimal positions where the maximal joint torque can be generated. To prove the effectiveness of the proposed control method, we devise two cases for the reference position of sliders. By comparing the control performance of two cases, the validity of the proposed control method will be verified.

Hand Shape Classification using Contour Distribution (윤곽 분포를 이용한 이미지 기반의 손모양 인식 기술)

  • Lee, Changmin;Kim, DaeEun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.6
    • /
    • pp.593-598
    • /
    • 2014
  • Hand gesture recognition based on vision is a challenging task in human-robot interaction. The sign language of finger spelling alphabets has been tested as a kind of hand gesture. In this paper, we test hand gesture recognition by detecting the contour shape and orientation of hand with visual image. The method has three stages, the first stage of finding hand component separated from the background image, the second stage of extracting the contour feature over the hand component and the last stage of comparing the feature with the reference features in the database. Here, finger spelling alphabets are used to verify the performance of our system and our method shows good performance to discriminate finger alphabets.