• Title/Summary/Keyword: Three-Dimensional Park

Search Result 2,434, Processing Time 0.037 seconds

A Study on the 3D Injection Mold Design Using Unigraphics API (Unigraphics API를 이용한 사출금형의 3차원 설계에 관한 연구)

  • Kim J.H.;Moon C.S.;Hwang Y.K.;Park J.W.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.6
    • /
    • pp.381-391
    • /
    • 2005
  • The design methodology of injection molding die has been changed from two-dimensional drafting to three-dimensional solid modeling, which is due to many advantages over the conventional methodology in terms of design modification and data associativity. In addition to the solid modeling capability, it is required for a mold designer to utilize a database management system that facilitates efficient mold design. In the paper presented is the implementation of a software program which automatically generates three-dimensional mold-bases including standard parts and slider parts, conforming to given geometric constraints. It is based on a commercial CAD system (Unigraphics NX) along with related API (application program interface) libraries. The research is expected to reduce design efforts and simplify construction of a complex three-dimensional mold-base model that is comprised of standard parts and slider parts, by use of the three-dimensional database and automatized geometric dimensioning.

Housing / Urban Development Integrated with Flood-Control Reservoirs in Japan

  • Watanabe, Naoyuki
    • Land and Housing Review
    • /
    • v.5 no.3
    • /
    • pp.203-214
    • /
    • 2014
  • The purpose of this paper is to introduce two integrated urban development projects in Japan that take full advantage of flood-control reservoirs: the Tetsugakudo Park Collective Housing Development Project and the Koshigaya Lake Town Project. The former project - implemented cooperatively by the Tokyo metropolitan government in charge of river management, Shinjuku and Nakano wards (in Tokyo) responsible for park management, and the Urban Renaissance Agency, a housing project developer - set a significant precedent for three-dimensional river use by realizing the three-dimensional integrated development of a flood control reservoir, a park, and collective housing. The Koshigaya Lake Town Project, launched as a drastic storm water management measure for a low-lying area often plagued by flooding, has achieved a sustainable coexistence between the waterfront environment and the urban living environment, with an artificial flood-control reservoir as the core for urban development. This project is fully committed to environmental coexistence through the optimal use of local environmental resources, with the cooperation of the central government, Saitama Prefecture and Koshigaya City.

Development of a Customized Helmet Design System for Patients with Plagiocephaly (사두증 환자를 위한 맞춤형 헬멧 몰드 디자인 시스템 개발)

  • Kang, Yeonghoon;Park, Hyeryeon;Kim, Sungmin
    • Fashion & Textile Research Journal
    • /
    • v.24 no.4
    • /
    • pp.443-450
    • /
    • 2022
  • This study developed a three-dimensional helmet mold design software that can design helmets for treating the infant plagiocephaly (flat head syndrome) using three-dimensional head scan data. For this, the three-dimensional head data of sixth SizeKorea body measurement project as well as the data produced by a head modeling software were used to prepare the head shape data of plagiocephaly patients. A total of 14 landmarks and 10 dimensions of heads required for helmet mold shape design and plagiocephaly diagnosis were automatically measured using an anthropometric analysis software. Using the software developed in this study, plagiocephaly can be diagnosed not only visually by three-dimensional head data visualization but also quantitatively by calculating the medically defined indices such as cranial index, which measures the proportions of the head, and the cranial vault asymmetry index, which measures the asymmetry of the head. The basic shape of the helmet mold was automatically generated based on the head scan data. Additionally, it is possible to fine tune the shape of the mold to reflect individual characteristics by using a free form deformation technique. Finally, the designed helmet mold was converted into the data that can be printed on a three-dimensional printer for generating the actual prototype.

Comparison of intraoral scanning and conventional impression techniques using 3-dimensional superimposition

  • Rhee, Ye-Kyu;Huh, Yoon-Hyuk;Cho, Lee-Ra;Park, Chan-Jin
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.6
    • /
    • pp.460-467
    • /
    • 2015
  • PURPOSE. The aim of this study is to evaluate the appropriate impression technique by analyzing the superimposition of 3D digital model for evaluating accuracy of conventional impression technique and digital impression. MATERIALS AND METHODS. Twenty-four patients who had no periodontitis or temporomandibular joint disease were selected for analysis. As a reference model, digital impressions with a digital impression system were performed. As a test models, for conventional impression dual-arch and full-arch, impression techniques utilizing addition type polyvinylsiloxane for fabrication of cast were applied. 3D laser scanner is used for scanning the cast. Each 3 pairs for 25 STL datasets were imported into the inspection software. The three-dimensional differences were illustrated in a color-coded map. For three-dimensional quantitative analysis, 4 specified contact locations(buccal and lingual cusps of second premolar and molar) were established. For two-dimensional quantitative analysis, the sectioning from buccal cusp to lingual cusp of second premolar and molar were acquired depending on the tooth axis. RESULTS. In color-coded map, the biggest difference between intraoral scanning and dual-arch impression was seen (P<.05). In three-dimensional analysis, the biggest difference was seen between intraoral scanning and dual-arch impression and the smallest difference was seen between dual-arch and full-arch impression. CONCLUSION. The two- and three-dimensional deviations between intraoral scanner and dual-arch impression was bigger than full-arch and dual-arch impression (P<.05). The second premolar showed significantly bigger three-dimensional deviations than the second molar in the three-dimensional deviations (P>.05).

A leak detection and 3D source localization method on a plant piping system by using multiple cameras

  • Kim, Se-Oh;Park, Jae-Seok;Park, Jong Won
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.155-162
    • /
    • 2019
  • To reduce the secondary damage caused by leakage accidents in plant piping systems, a constant surveillance system is necessary. To ensure leaks are promptly addressed, the surveillance system should be able to detect not only the leak itself, but also the location of the leak. Recently, research to develop new methods has been conducted using cameras to detect leakage and to estimate the location of leakage. However, existing methods solely estimate whether a leak exists or not, or only provide two-dimensional coordinates of the leakage location. In this paper, a method using multiple cameras to detect leakage and estimate the three-dimensional coordinates of the leakage location is presented. Leakage is detected by each camera using MADI(Moving Average Differential Image) and histogram analysis. The two-dimensional leakage location is estimated using the detected leakage area. The three-dimensional leakage location is subsequently estimated based on the two-dimensional leakage location. To achieve this, the coordinates (x, z) for the leakage are calculated for a horizontal section (XZ plane) in the monitoring area. Then, the y-coordinate of leakage is calculated using a vertical section from each camera. The method proposed in this paper could accurately estimate the three-dimensional location of a leak using multiple cameras.

PERFORMANCE ANALYSIS OF NREL PHASE VI WIND TURBINES UNDER VARIOUS SCALE CONDITIONS (스케일 변화에 따른 NREL PHASE VI 풍력터빈의 성능해석)

  • Park, Y.M.;Chang, B.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.155-158
    • /
    • 2006
  • In the present paper, the scale effects of two-dimensional airfoil and three-dimensional wind turbine were investigated by using FLUENT software. For two dimensional analysis, flow around S809 airfoil with various Reynolds No. and Mach No. conditions were simulated. For three dimensional analysis, scaled NREL Phase VI wind turbine models from 6% to 1,600% were simulated under the same tip speed ratio condition. Finally, aerodynamic comparisons between two-dimensional flow and three dimensional wind turbine flow are made for the feasibility study of scale effect corrections. Currently, KARI(Korea Aerospace Research Institute) is preparing for the wind tunnel test of 12% NREL Phase VI wind turbine and the performance analysis of the scaled NREL wind turbine model will be validated by the wind tunnel test.

  • PDF

Three-Dimensional Rotordynamic Analysis Considering Bearing Support Effects (베어링 지지 효과를 고려한 3 차원 로터동역학 해석)

  • Park, Hyo-Keun;Kim, Dong-Hyun;Kim, Myung-Kuk;Chen, Seung-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.902-909
    • /
    • 2006
  • In this study, three-dimensional rotordynamic analyses have been conducted using equivalent beam, hybrid and fun three-dimensional models. The Present computational method is based on the general finite element method with rotating gyroscopic effects of a rotor system. General purpose commercial finite element code, SAMCEF which includes practical rotordynamics module with various types of rotor analysis methods and bearing elements is applied. For the purpose of numerical verification, comparison study for a benchmark rotor model with support bearings is performed first. Detailed finite element models based on three different modeling concepts are constructed and then computational analyses are conducted for the realistic and complex three-dimensional rotor system. The results for rotor stability and mass unbalance response are presented and compared with the experimental vibration test conducted in this study.

  • PDF

IMPLEMENTATION OF ADAPTIVE WAVELET METHOD FOR ENHANCEMENT OF COMPUTATIONAL EFFICIENCY FOR THREE DIMENSIONAL EULER EQUATION (3차원 오일러 방정식의 계산 효율성 증대를 위한 Adaptive Wavelet 기법의 적용)

  • Jo, D.U.;Park, K.H.;Kang, H.M.;Lee, D.H.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.58-65
    • /
    • 2014
  • The adaptive wavelet method is studied for the enhancement of computational efficiency of three-dimensional flows. For implementation of the method for three-dimensional Euler equation, wavelet decomposition process is introduced based on the previous two-dimensional adaptive wavelet method. The order of numerical accuracy of an original solver is preserved by applying modified thresholding value. In order to assess the efficiency of the proposed algorithm, the method is applied to the computation of flow field around ONERA-M6 wing in transonic regime with 4th and 6th order interpolating polynomial respectively. Through the application, it is confirmed that the three-dimensional adaptive wavelet method can reduce the computational time while conserving the numerical accuracy of an original solver.