• Title/Summary/Keyword: Three-Dimensional Overhead Crane

Search Result 3, Processing Time 0.015 seconds

A Fuzzy-Logic Anti-Swing Control for Three-Dimensional Overhead Cranes (Fuzzy 로직에 의한 3차원 천정크레인의 무진동 제어)

  • Lee, Ho-Hun;Kim, Hyeon-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1468-1474
    • /
    • 2001
  • In this paper, a new fuzzy-logic anti-swing control scheme is proposed for a three-dimensional overhead crane. The proposed control consists of a position servo control and a fuzzy-logic control. The position servo control is used to control the trolley position and rope length, and the fuzzy-logic control is used to suppress load swing. The proposed control guarantees not only prompt suppression of load swing but also accurate control of trolley position and rope length for the simultaneous travel, traverse, and hoisting motions of the crane. The effectiveness of the proposed control is shown by experiments with a prototype three-dimensional overhead crane.

Development of a Motion Control Algorithm for the Automatic Operation System of Overhead Cranes (천장크레인의 무인운전 시스템을 위한 운동제어 알고리즘 개발)

  • Lee, Jong-Kyu;Park, Young-Jo;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3160-3172
    • /
    • 1996
  • A search algorithm for the collision free, time optimal transport path of overhead cranes has been proposed in this paper. The map for the working environment of overhead cranes was constructed in the form of three dimensional grid. The obstacle occupied region and unoccupied region of the map has been represented using the octree model. The best-first search method with a suitable estimation function was applied to select the knot points on the collision free transport path to the octree model. The optimization technique, minimizing the travel time required for transporting objects to the goal while subjected to the dynamic constraints of the crane system, was developed to find the smooth time optimal path in the form of cubic spline functions which interpolate the selected knot points. Several simulation results showed that the selected estimation function worked effectively insearching the knot points on the collision free transport path and that the resulting transport path was time optimal path while satisfying the dynamic constraints of the crane system.

Robust Adaptive Control of 3D Crane Systems with Uncertainty (불확실성 요소를 갖는 3D 크레인 시스템의 강인적응제어)

  • Jeong, Sang-Chul;Kim, Dong-Won;Lee, Hyung-Ki;Cho, Hyun-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.102-108
    • /
    • 2008
  • This paper presents robust and adaptive control method for complicated three dimensional crane systems with uncertain effect. We consider an overhead crane system in which a trolly located on its top is moved to x- and y-axis independently. We first approximate the complicated crane model through linearization approach to simply construct a PD control and then design an adaptive control system for compensating modeling error and control deviation which is feasibly occurred due to system perturbation in practice. An adaptive control scheme is analytically derived using Lyapunov stability theory for a given bound of system perturbation. We accomplish numerical simulation for evaluation of the proposed control system and demonstrate its superiority comparing with the traditional control strategy.