• 제목/요약/키워드: Three-Dimensional Modelling

검색결과 218건 처리시간 0.022초

Effect of new tunnel construction on structural performance of existing tunnel lining

  • Yoo, Chungsik;Cui, Shuaishuai
    • Geomechanics and Engineering
    • /
    • 제22권6호
    • /
    • pp.497-507
    • /
    • 2020
  • This paper presents the results of a three-dimensional numerical investigation into the effect of new tunnel construction on structural performance of existing tunnel lining. A three-dimensional finite difference model, capable of modelling the tunnel construction process, was adopted to perform a parametric study on the spatial variation of new tunnel location with respect to the existing tunnel with emphasis on the plan crossing angle of the new tunnel with respect to the existing tunnel and the vertical elevation of the new tunnel with respect to the existing one. The results of the analyses were arranged so that the effect of new tunnel construction on the lining member forces and stresses of the existing tunnel can be identified. The results indicate that when a new tunnel underpasses an existing tunnel, the new tunnel construction imposes greater impact on the existing tunnel lining when the two tunnels cross at an acute angle. Also shown are that the critical plan crossing angle of the new tunnel that would impose greater impact on the existing tunnel depends on the relative vertical location of the new tunnel with respect to the existing one, and that the overpassing new tunnel construction scenario is more critical than the underpassing scenario in view of the existing tunnel lining stability. Practical implications of the findings are discussed.

해수순환과 온배수 확산에 관한 3차원 수치모델링 (Three-Dimensional Numerical Modelling of Water Circulation and Thermal Diffusion)

  • 정태성;김상익;강시환
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제1권1호
    • /
    • pp.93-101
    • /
    • 1998
  • 연안해역에서 해수순환과 오염물질의 확산과정을 연구하기 위해 수치모형이 널리 사용되어 왔으며, 최근에는 3차원 모형의 개발과 적용이 증가하고 있다. 연안해역에서 해수유동과 확산현상을 해석할 수 있는 3차원 수치모형을 수립하여 발전소 주변해역에서 해수유동과 온배수 문제에 적용하고 현장관측자료와 비교하였다. 수치모형은 실제 연안해역에서 유속분포와 수온분포를 비교적 정확히 재현하였다. 따라서, 수립된 모형은 연안해역의 해수유동 및 확산문제를 해석하는 데 널리 활용될 수 있을 것이다.

  • PDF

A hybrid MC-HS model for 3D analysis of tunnelling under piled structures

  • Zidan, Ahmed F.;Ramadan, Osman M.
    • Geomechanics and Engineering
    • /
    • 제14권5호
    • /
    • pp.479-489
    • /
    • 2018
  • In this paper, a comparative study of the effects of soil modelling on the interaction between tunnelling in soft soil and adjacent piled structure is presented. Several three-dimensional finite element analyses are performed to study the deformation of pile caps and piles as well as tunnel internal forces during the construction of an underground tunnel. The soil is modelled by two material models: the simple, yet approximate Mohr Coulomb (MC) yield criterion; and the complex, but reasonable hardening soil (HS) model with hyperbolic relation between stress and strain. For the former model, two different values of the soil stiffness modulus ($E_{50}$ or $E_{ur}$) as well as two profiles of stiffness variation with depth (constant and linearly increasing) were used in attempts to improve its prediction. As these four attempts did not succeed, a hybrid representation in which the hardening soil is used for soil located at the highly-strained zones while the Mohr Coulomb model is utilized elsewhere was investigated. This hybrid representation, which is a compromise between rigorous and simple solutions yielded results that compare well with those of the hardening soil model. The compared results include pile cap movements, pile deformation, and tunnel internal forces. Problem symmetry is utilized and, therefore, one symmetric half of the soil medium, the tunnel boring machine, the face pressure, the final tunnel lining, the pile caps, and the piles are modelled in several construction phases.

Finite element modelling of self-supported transmission lines under tornado loading

  • Altalmas, A.;El Damatty, A.A.
    • Wind and Structures
    • /
    • 제18권5호
    • /
    • pp.473-495
    • /
    • 2014
  • Localized wind events, in the form of tornadoes and downbursts, are the main cause of the large number of failure incidents of electrical transmission line structures worldwide. In this study, a numerical model has been developed to study the behaviour of self-supported transmission lines under various tornado events. The tornado wind fields used were based on a full three-dimensional computational fluid dynamics analysis that was developed in an earlier study. A three-dimensional finite element model of an existing self-supported transmission line was developed. The tornado velocity wind fields were then used to predict the forces applied to the modelled transmission line system. A comprehensive parametric study was performed in order to assess the effects of the location of the tornado relative to the transmission line under F2 and F4 tornado wind fields. The study was used to identify critical tornado configurations which can be used when designing transmission line systems. The results were used to assess the sensitivity of the members' axial forces to changes in the location of the tornado relative to the transmission line. The results were then used to explain the behaviour of the transmission line when subjected to the identified critical tornado configurations.

The influence of initial stresses on energy release rate and total electro-mechanical potential energy for penny-shaped interface cracks in PZT/Elastic/PZT sandwich circular plate-disc

  • Akbarov, Surkay D.;Cafarova, Fazile I.;Yahnioglu, Nazmiye
    • Smart Structures and Systems
    • /
    • 제22권3호
    • /
    • pp.259-276
    • /
    • 2018
  • This paper studies the energies and energy release rate (ERR) for the initially rotationally symmetric compressed (or stretched) in the inward (outward) radial direction of the PZT/Elastic/PZT sandwich circular plate with interface penny-shaped cracks. The investigations are made by utilizing the so-called three-dimensional linearized field equations and relations of electro-elasticity for piezoelectric materials. The quantities related to the initial stress state are determined within the scope of the classical linear theory of piezoelectricity. Mathematical formulation of the corresponding problem and determination of the quantities related to the stress-strain state which appear as a result of the action of the uniformly normal additional opening forces acting on the penny-shaped crack's edges are made within the scope of the aforementioned three-dimensional linearized field equations solution which is obtained with the use of the FEM modelling. Numerical results of the energies and ERR and the influence of the problem parameters on these quantities are presented and discussed for the PZT- 5H/Al/PZT-5H, PZT-4/Al/PZT-4, $BaTiO_3/Al/BaTiO_3$ and PZT-5H/StPZT-5H sandwich plates. In particular, it is established that the magnitude of the influence of the piezoelectricity and initial loading on the ERR increases with crack radius length.

Lateral load effects on tall shear wall structures of different height

  • Carpinteri, Alberto;Corrado, Mauro;Lacidogna, Giuseppe;Cammarano, Sandro
    • Structural Engineering and Mechanics
    • /
    • 제41권3호
    • /
    • pp.313-337
    • /
    • 2012
  • A three-dimensional formulation is proposed to analyze the lateral loading distribution of external actions in high-rise buildings. The method is extended to encompass any combination of bracings, including bracings with open thin-walled cross-sections, which are analyzed in the framework of Timoshenko-Vlasov's theory of sectorial areas. More in detail, the proposed unified approach is a tool for the preliminary stages of structural design. It considers infinitely rigid floors in their own planes, and allows to better understand stress and strain distributions in the different bearing elements if compared to a finite element analysis. Numerical examples, describing the structural response of tall buildings characterized by bracings with different cross-section and height, show the effectiveness and flexibility of the proposed method. The accuracy of the results is investigated by a comparison with finite element solutions, in which the bracings are modelled as three-dimensional structures by means of shell elements.

Three-dimensional finite element modelling and dynamic response analysis of track-embankment-ground system subjected to high-speed train moving loads

  • Fu, Qiang;Wu, Yang
    • Geomechanics and Engineering
    • /
    • 제19권3호
    • /
    • pp.241-254
    • /
    • 2019
  • A finite element approach is presented to examine ground vibration characteristics under various moving loads in a homogeneous half-space. Four loading modes including single load, double load, four-load, and twenty-load were simulated in a finite element analysis to observe their influence on ground vibrations. Four load moving speeds of 60, 80, 100, and 120 m/s were adopted to investigate the influence of train speed to the ground vibrations. The results demonstrated that the loading mode in a finite element analysis is reliable for train-induced vibration simulations. Additionally, a three-dimensional finite element model (3D FEM) was developed to investigate the dynamic responses of a track-ballast-embankment-ground system subjected to moving loads induced by high-speed trains. Results showed that vibration attenuations and breaks exist in the simulated wave fronts transiting through different medium materials. These tendencies are a result of the difference in the Rayleigh wave speeds of the medium materials relative to the speed of the moving train. The vibration waves induced by train loading were greatly influenced by the weakening effect of sloping surfaces on the ballast and embankment. Moreover, these tendencies were significant when the vibration waves are at medium and high frequency levels. The vibration waves reflected by the sloping surface were trapped and dissipated within the track-ballast-embankment-ground system. Thus, the vibration amplitude outside the embankment was significantly reduced.

Three dimensional seismic deformation-shear strain-swelling performance of America-California Oroville Earth-Fill Dam

  • Karalar, Memduh;Cavusli, Murat
    • Geomechanics and Engineering
    • /
    • 제24권5호
    • /
    • pp.443-456
    • /
    • 2021
  • Structural design of the vertical displacements and shear strains in the earth fill (EF) dams has great importance in the structural engineering problems. Moreover, far fault earthquakes have significant seismic effects on seismic damage performance of EF dams like the near fault earthquakes. For this reason, three dimensional (3D) earthquake damage performance of Oroville dam is assessed considering different far-fault ground motions in this study. Oroville Dam was built in United States of America-California and its height is 234.7 m (770 ft.). 3D model of Oroville dam is modelled using FLAC3D software based on finite difference approach. In order to represent interaction condition between discrete surfaces, special interface elements are used between dam body and foundation. Non-reflecting seismic boundary conditions (free field and quiet) are defined to the main surfaces of the dam for the nonlinear seismic analyses. 6 different far-fault ground motions are taken into account for the full reservoir condition of Oroville dam. According to nonlinear seismic analysis results, the effects of far-fault ground motions on the nonlinear seismic settlement and shear strain behaviour of Oroville EF dam are determined and evaluated in detail. It is clearly seen that far-fault earthquakes have very significant seismic effects on the settlement-shear strain behaviour of EF dams and these earthquakes create vital important seismic damages on the swelling behaviour of dam body surface. Moreover, it is proposed that far-fault ground motions should not be ignored while modelling EF dams.

CAD/CAM 시스템을 이용한 레저보트의 플러그 모델링 및 가공 (The Modelling and Machining of Leisure Boat Plug using CAD/CAM System)

  • 김성일
    • 대한공업교육학회지
    • /
    • 제33권2호
    • /
    • pp.259-272
    • /
    • 2008
  • 목형의 곡면을 수작업으로 제작할 때 많은 경험이 있다 하더라도 정확한 곡면 형상, 좌우대칭 등의 작업에는 상당한 어려움이 따른다. 기계를 사용한 단순한 2차원 목형은 NC 프로그램을 작성하여 간단히 가공할 수 있지만, 복잡한 곡면 형상의 가공은 3차원 CAM s/w, 공구, 재료 등 다양한 변수가 따르기에 축척된 많은 데이터를 필요로 한다. 3차원 곡면 가공 제품 중 제품의 설계 및 디자인 s/w가 다르다면, 데이터의 호환 및 가공 시스템을 구성하기에는 더더욱 어려움이 따른다. 최근 레저에 대한 관심이 증가함에 따라 레저보트 업체에서는 수작업 대신 레저장비에 대한 소비자의 디자인 및 설계제작 요구에 대응하기 위해서 가공 자동화 및 정밀도 향상을 위하여 CAD/CAM 시스템을 이용한 3차원 모델링 및 CNC 공작기계를 사용한 새로운 개념의 플러그 제작 자동화 기술 개발이 필요하게 되었다. 따라서 본 연구는 수작업으로 제작하던 레저보트의 목형을 정밀도와 생산성 향상을 위하여 디자인을 강조한 3차원 디자인 s/w로 디자인하고, 이 디자인 한 데이터를 이용하여 3차원 CAM s/w에서 모델링 한 후, 가공 데이터를 산출하여 정밀가공기계인 머시닝센터로 가공하고자 하는 것이다. 이 연구 결과를 바탕으로 전문계 고교에서도 CAD 및 단순 가공 기술교육에서 벗어나 다양한 디자인으로 된 곡면 가공 수요자의 요구에 대응하기 위한 3차원 모델링과 3차원 정밀 가공 시스템의 교육 및 개발에 도움이 되었으면 한다. 본 연구는 선박의 하단부인 헐(Hull)의 목형인 플러그(plug)를 가공하기 위하여 플러그의 재료, 2차원 도면 형상을 3차원 형상으로의 모델링, 3차원 디자인 모델링, 가공을 위한 CAM, CNC 공작기계를 이용한 가공 기술 등 여러 가지 융합되고 복합적인 기술인 CAD/CAM 시스템을 활용한 모델링 및 플러그 가공 기술을 개발하는 것이다. 학생들에게는 기술개발의 중요성을, 업체에게는 생산성 향상이 주목적이다.

3차원 유한요소해석을 통한 shield TBM 터널 근접시공에 의한 인접 단독말뚝의 거동에 대한 연구 (A study on the behaviour of pre-existing single piles to adjacent shield TBM tunnelling from three-dimensional finite element analyses)

  • 전영진;전승찬;전상준;이철주
    • 한국터널지하공간학회 논문집
    • /
    • 제22권1호
    • /
    • pp.23-46
    • /
    • 2020
  • 본 연구에서는 터널 근접 시공으로 인한 기 존재 단독말뚝의 공학적 거동을 파악하기 위하여 터널로부터 말뚝선단의 이격거리와 막장압의 변화를 고려한 3차원 유한요소해석을 수행하였다. 수치해석에서는 터널 막장압을 고려하여 말뚝의 거동을 분석하였으며, 터널굴착으로 유발되는 지반침하, 말뚝두부침하, 말뚝축력 및 말뚝-지반 사이의 경계면에서 발생하는 전단응력을 고찰하였다. 말뚝이 터널 크라운(crown) 바로 상부에 위치하고 말뚝선단까지의 수직 이격거리가 0.25D (여기서, D는 터널직경)인 경우 초기 응력의 50%에 해당하는 막장압을 적용할 경우 25%의 막장압을 적용한 것과 비교한 결과 말뚝두부의 침하가 약 38% 감소하였다. 또한, 막장압의 크기가 작을수록 지반침하, 말뚝의 축력 및 말뚝-지반 사이에서 발생하는 전단응력이 증가하며, 말뚝이 터널굴착 영향권 밖에 존재할 경우 말뚝에는 압축력 형태의 축력이 발생하였다. 따라서 막장압의 크기 및 터널-말뚝선단의 상대위치는 지반 침하와 말뚝 침하에 큰 영향을 미치는 것으로 분석되었다. 본 연구에서 수행된 연구결과의 경우 기존에 보고된 연구결과를 바탕으로 비교분석을 실시하였으며, 터널굴착으로 인한 말뚝의 거동을 심도 있게 분석하였다.