• Title/Summary/Keyword: Three-Dimensional Flow Measurement

Search Result 160, Processing Time 0.03 seconds

A Study on Estimation of inner and Wall Pressure Distribution by 3-Dimensional velocity Measurement using PIV (PIV를 이용한 3차원 속도계측에 의한 유동장의 공간 및 벽면압력 분포 추정에 관한연구)

  • 이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.468-480
    • /
    • 1998
  • A flow measurement system which is able to measure the instantaneous three-dimensional velocity components and the pressure distribution of fluid flows is developed using a digital image processing system and the stereoscopic photogrammetry. This system consists of two TV cameras a digital image processor and a 32-bit microcomputer. The capability of the developed system is verified by a preliminary test in which three-dimensional displancements of moving particles arranged on a rotating plate are tracked automatically. The constructed system is through the measurement and spatial pressure distribution is also obtained. The measurement uncertainty of this system is evaluated quantitatively. The present technique is applicable to the measurement of an unsteady fluid phenomenon especially to the measurement of three-dimensional velocity field of a complex flow.

  • PDF

Effect of Convex Wall Curvature on Three-Dimensional Behavior of Film Cooling Jet

  • Lee, Sang-Woo;Lee, Joon-Sik;Keon Kuk
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1121-1136
    • /
    • 2002
  • The flow characteristics of film coolant issuing into turbulent boundary layer developing on a convex surface have been investigated by means of flow visualization and three-dimensional velocity measurement. The Schlieren optical system with a spark light source was adopted to visualize the jet trajectory injected at 35° and 90° inclination angles. A five-hole directional pressure probe was used to measure three-dimensional mean velocity components at the injection angle of 35°. Flow visualization shows that at the 90° injection, the jet flow is greatly changed near the jet exit due to strong interaction with the crossflow. On the other hand, the balance between radial pressure gradient and centrifugal force plays an important role to govern the jet flow at the 35° injection. The velocity measurement shows that at a velocity ratio of 0.5, the curvature stabilizes downstream flow, which results in weakening of the bound vortex structure. However, the injectant flow is separated from the convex wall gradually, and the bound vortex maintains its structure far downstream at a velocity ratio of 1.98 with two pairs of counter rotating vortices.

CORRELATION STUDY OF THE MEASURED TUMBLE RATIOS USING THREE DIFFERENT METHODS: STEADY FLOW RIG; 2-DIMENSIONAL PIV; AND 3-DIMENSIONAL PTV WATER FLOW RIG

  • Kim, M.J.;Lee, S.H.;Kim, W.T.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.441-448
    • /
    • 2006
  • In-cylinder flows such as tumble and swirl play an important role on the engine combustion efficiencies and emission formations. The tumble flow, which is dominant in current high performance gasoline engines, is able to effect fuel consumptions and emissions under a partial load condition in addition to the volumetric efficiency under a wide open throttle condition. Therefore, it is important to optimize the tumble ratio of a gasoline engine for better fuel economy, lower emissions, and maximum volumetric efficiency. First step for optimizing a tumble ratio is to measure a tumble ratio accurately. For a tumble ratio measurement, many different methods have been developed and used such as steady flow rig, PIV, PTV, and LDV. However, it is not well known about the relations among the measured tumble ratios using different methods. The purpose of this research is to correlate the tumble ratios measured using three different methods and find out merits and demerits of each measurement method. In this research the tumble flow was measured, compared, and correlated using three different measurement methods at the same engine: steady flow rig; 2-dimensional PIV; and 3-dimensional PTV water flow rig.

Development of Stereoscopic Micro-PTV Method (Stereoscopic micro-PTV기법의 개발)

  • Yu, Cheong-Hwan;Kim, Hyoung-Bum
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.109-113
    • /
    • 2007
  • Micro-PIV is a well-known method for measurement of two- dimensional, two-component velocity in the microfluidic devices. Lots of the micro fluidic devices generate three-dimensional flow and 3D measurement of velocity is helpful to understand the physics of micro flow phenomena. In this study, we developed new micro 3D measurement method by applying 2-frame PTV in stereoscopic micro system. In this study, we did the validation study of SMPTV by using the simulated flow model to verify the accuracy and the feasibility of measurement and compared with SMPIV method. The results showed that SMPTV provides better spatial resolution and measurement accuracy than SMPIV method.

  • PDF

MEASUREMENT OF THREE-DIMENSIONAL TRAJECTORIES OF BUBBLES AROUND A SWIMMER USING STEREO HIGH-SPEED CAMERA

  • Nomura, Tsuyoshi;Ikeda, Sei;Imura, Masataka;Manabe, Yoshitsugu;Chihara, Kunihiro
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.768-772
    • /
    • 2009
  • This paper proposes a method for measurement three-dimensional trajectories of bubbles generated around a swimmer's arms from stereo high-speed camera videos. This method is based on two techniques: two-dimensional trajectory estimation in single-camera images and trajectory pair matching in stereo-camera images. The two-dimensional trajectory is estimated by block matching using similarity of bubble shape and probability of bubble displacement. The trajectory matching is achieved by a consistensy test using epipolar constraint in multiple frames. The experimental results in two-dimensional trajectory estimation showed the estimation accuracy of 47% solely by the general optical flow estimation, whereas 71% taking the bubble displacement into consideration. This concludes bubble displacement is an efficient aspect in this estimation. In three-dimensional trajectory estimation, bubbles were visually captured moving along the flow generated by an arm; which means an efficient material for swimmers to swim faster.

  • PDF

Adaptability of one-dimensional analysis for the flow distribution of a complex duct system (복합 덕트시스템의 유량분배에 관한 1차원 해석의 적합성)

  • 이승철;이재헌
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.579-587
    • /
    • 1999
  • The flow distribution characteristics in a complex duct system have been investigated in this paper by three means, namely experimental measurement, numerical simulation and the Extended T-method analysis. While the exit flow rates predicted by the three-dimensional CFD calculation and those given by the experiment show a close agreement, the results from the one-dimensional Extended T-method are found to differ from the experiment by -22.2% to 26.3% for the various exits. These discrepancies may be attributed to the underlying limitation concerning the fitting loss coefficients, which assume that the flow in front of the fittings is fully developed. It is proposed that, in order to analyse the three-dimensional flow distributions in a complex duct system by one-dimensional analysis such as the Extended T-method, further Improvements to the fitting loss coefficients should be made.

  • PDF

A study on flow characteristics in a partially filled open channel (비만관 개수로 유동 특성 연구)

  • Choi, Jung-Geun;Sung, Jae-Yong;Lee, Myeong-Ho;Lee, Suk-Jong
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.73-77
    • /
    • 2006
  • Flow rate measurement is one of the difficult problems in the industrial applications. Especially, flow rate in a partially filled pipeline is affected by many parameters such as water level, channel slop, etc. In the present study, prior to the development of a flowmeter, the flow characteristics has been investigated by particle image velocimetry (PIV) measurements. Three-dimensional velocity distributions were obtained from sectional measurements of velocity profiles according to the water level. As a result, it is found that there is no similarity in the velocity profile when the lateral position is changed. In addition, the maximum velocity does not always occur on the free surface. It depends on the water level. In the aspect of flow rate measurement, the previous calculus based upon point measurement techniques is proved to be inaccurate because of the lack of whole flow information.

  • PDF

Three-Dimensional Characterization of Strong Recirculating Flow by Stereoscopic PIV

  • Ikeda, Yuji;Palero, Virginia;Sato, Kei;Nakajima, Tsuyoshi
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.37-43
    • /
    • 2002
  • Spray characteristics in the swirling flow were investigated by Stereoscopic PIV. Spatial spray structures were measured by PIV as well as PDA in order to understand stable flame stabilization. The feasibility study of Stereoscopic PIV in spray flame was also demonstrated. The size and location of recirculation flow were measured. The stereoscopic PIV could provide 3-D flow fluctuation that cannot be measured by convectional measurement systems.

  • PDF

3D Particle Image Detection by Using Color Encoded Illumination System

  • Kawahashi M.;Hirahara H.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.100-107
    • /
    • 2001
  • A simple new technique of particle depth position measurement, which can be applied for three-dimensional velocity measurement of fluid flows, is proposed. Two color illumination system that intensity is encoded as a function of z-coordinate is introduced. A calibration procedure is described and a profile of small sphere is detected by using the present method as preliminary test. Then, this method is applied to three-dimensional velocity field measurement of simple flow fields seeded with tracer particles. The motion of the particles is recorded by color 3CCD camera. The particle position in the image plane is read directly from the recorded image and the depth of each particle is measured by calculation of the intensity ratio of encoded two color illumination. Therefore three-dimensional velocity components are reconstructed. Although the result includes to some extent error, the feasibility of the present technique for three-dimensional velocity measurement was confirmed.

  • PDF

Turbulent properties in a mixed statistically stationary flow

  • Baek, Tae-Sil;Doh, Deog-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.729-736
    • /
    • 2013
  • The turbulent properties in a mixed statistically stationary flow were investigated experimentally by a pseudo stereoscopic PIV. In order to validate the experimental results, the profiles of the turbulent kinetic energy were evaluated with the flow features. A mechanical agitator having 6 blades was installed at the bottom of the mixing tank (D=60cm, H=60cm). The agitator was rotated with 80rpm clockwise and counter-clockwise. For the measurements, three cameras were used and all were synchronized. The images captured by one of the three cameras was used for the measurement of rotational speed, and the images captured by the other two cameras were used to measure three dimensional components of velocity vectors. All vectors captured at the same rotational angle were phase averaged to construct three-dimensional vector fields to reconstruct the spatial distribution of the flow properties. It was seen that the jet scrolling along the tank was the main source of mixing.