• Title/Summary/Keyword: Three phase diode rectifier

Search Result 59, Processing Time 0.025 seconds

Advanced Three-Phase PFC Power Converters with Three-Phase Diode Rectifier and Four-Switch Boost Chopper

  • Nishimura Kazunori;Hirachi Katsuya;Hiraki Eiji;Ahmed Nabil A.;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.356-365
    • /
    • 2006
  • This paper presents an improved three-phase PFC power rectifier with a three-phase diode rectifier cascaded four-switch boost converter. Its operating principle contains the operating principle of two conventional three-phase PFC power rectifiers: one switch boost converter type and a two switch boost converter type. The operating characteristics of the four switch boost converter type three-phase PFC power rectifier are evaluated from a practical point of view, being compared with one switch boost converter type and two switch boost converter topologies.

Input Current Characteristics of a Three-Phase Diode Rectifier with Capacitive Filter under Line Voltage Unbalance Condition (커패시터 필터를 갖는 3상 다이오드 정류회로의 불형전원에서의 입력전류 특성)

  • 정승기;이동기;박기원
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.38-38
    • /
    • 2001
  • The three-phase diode rectifier with capacitive filter is highly sensitive to line voltage unbalance. Because of its inherent nonlinear characteristics, small line voltage unbalance may cause highly unbalanced line current, causing detrimental effects on power quality. This paper presents a theoretical basis on this ′unbalance amplification effect′ and derives an analytical model of line current characteristics under unbalanced line voltage condition for various modes of operation. The results provide a basic guideline for optimal design of a three-phase diode rectifier with capacitive filter that is most commonly used for interfacing various power conversion equipments to power lines.

Input Current Characteristics of a Three-Phase Diode Rectifier with Capacitive Filter Under Line Voltage Unbalance Condition

  • Jeong Seung-Gi;Lee Dong-Ki;Park Ki-Won
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.808-815
    • /
    • 2001
  • The three-phase diode rectifier with a capacitive filter is highly sensitive to line voltage unbalance, and may cause significantly unbalanced line currents even under slightly unbalanced voltage condition. This paper presents an analysis of this 'unbalance amplification' effect for an ideal rectifier circuit without ac-and dc-side inductors. The voltage unbalance is modeled by introducing a deviation voltage superimposed on balanced three-phase line voltages. With proper approximations, closed-form expressions for symmetrical components of the line current and current unbalance factor are derived in terms of the voltage unbalance factor, filter reactance, and load current. The validity of analytical predictions is confirmed by simulation.

  • PDF

Input Current Characteristics of a Three-Phase Diode Rectifier with Capacitive Filter under Line Voltage Unbalance Condition (커패시터 필터를 갖는 3상 다이오드 정류회로의 불평형전원에서의 입력전류 특성)

  • 정승기;이동기;박기원
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.348-361
    • /
    • 2001
  • The three-phase diode rectifier with capacitive filter is highly sensitive to line voltage unbalance. Because of its inherent nonlinear characteristics, small line voltage unbalance may cause highly unbalanced line current, causing detrimental effects on power quality. This paper presents a theoretical basis on this 'unbalance amplification effect' and derives an analytical model of line current characteristics under unbalanced line voltage condition for various modes of operation. The results provide a basic guideline for optimal design of a three-phase diode rectifier with capacitive filter that is most commonly used for interfacing various power conversion equipments to power lines.

  • PDF

Novel Average Value Model for Faulty Three-Phase Diode Rectifier Bridges

  • Rahnama, Mehdi;Vahedi, Abolfazl;Alikhani, Arta Mohammad;Nahid-Mobarakeh, Babak;Takorabet, Noureddine
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.288-295
    • /
    • 2019
  • Rectifiers are widely used in industrial applications. Although detailed models of rectifiers are usually used to evaluate their performance, they are complex and time-consuming. Therefore, the Average Value Model (AVM) has been introduced to meet the demand for a simple and accurate model. This type of rectifier modeling can be used to simplify the simulations of large systems. The AVM of diode rectifiers has been an area of interest for many electrical engineers. However, healthy diode rectifiers are only considered for average value modeling. By contrast, faults occur frequently on diodes, which eventually cause the diodes to open-circuit. Therefore, it is essential to model bridge rectifiers under this faulty condition. Indeed, conventional AVMs are not appropriate or accurate for faulty rectifiers. In addition, they are significantly different in modeling. In this paper, a novel application of the parametric average value of a three-phase line-commutated rectifier is proposed in which one diode of the rectifier is considered open-circuited. In order to evaluate the proposed AVM, it is compared with experimental and simulation results for the application of a brushless synchronous generator field. The results clearly demonstrate the accuracy of the proposed model.

The Development of CPLD Controller for Reducing Harmonics of 3 Phase Diode Rectifier (3상 다이오드정류기의 고조파 저감을 위한 CPLD 컨트롤러의 개발)

  • 김병진;박종찬;손진근;임병국;전희종
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.3
    • /
    • pp.43-48
    • /
    • 2000
  • In this paper, CPLD(Complex Programmable Logic Device) controller designed with VHDL is developed. With the controller, the harmonics from 3 phase diode rectifier are suppressed and power factor is also improved. The input current of diode rectifier is drawn from the ac mains only during the period in the ac cycle when the instantaneous voltage is greater than the voltage across the dc-link capacitor. The three bidirectional switches rated at very small power are installed in a conventional three phase diode rectifier. Using CPLD controller, an idle current charges to capacitors continuously. Results of simulation and experimental demonstrate a reduction of harmonics, a improvement of power factor and THD.

  • PDF

Input Current Characteristics of a Three-Phase Diode Rectifier with Capacitive Filter Under Line Voltage Unbalance Condition (커패시터 필터를 갖는 3상 다이오드 정류회로의 불평형전원에서의 입력전류 특성)

  • Lee Dong-Gei;Park Gei won;Jung Seong Gei
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.569-575
    • /
    • 2001
  • The three-phase diode rectifier with capacitive Inter is highly sensitive to line voltage unbalance. Because of its inherent nonlinear characteristics small line voltage unbalance may cause highly unbalanced line current causing detrimental effects on power quality. This paper presents a theoretical basis on this 'unbalance amplification effect' and derives an analytical model of line current characteristics under unbalanced line voltage condition for various modes of operation. The results provide a basic and important guideline for optimal design of a three-phase diode rectifier with capacitive filter that is most commonly used for interfacing various power conversion equipments to power lines.

  • PDF

Harmonic Reduction of Diode Rectifiers by a New Zero-Sequence Current Injection Method (새로운 영상전류 주입법에 의한 다이오드 정류기의 고조파 저감)

  • 김현정;장민수;최세완;원충연;김규식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.6
    • /
    • pp.596-603
    • /
    • 2002
  • In this paper a new harmonic reduction method of three-phase diode rectifiers is proposed to improve input current performance using the zero-sequence harmonics injection technique. The proposed mothed, based on the third-harmonic injection, employs two half-bridge inverters and two single-phase transformers to independently shape the positive and negative dc rail currents of the diode rectifier. The actively shaped zero-sequence harmonic currents are t]ten circulated through the ac side of the rectifier using a zigzag transformer This results in pure sinusoidal input currents in the three-phase diode rectifier. Experimental results on a 1.5kVA prototype are provided to validate the proposed technique.

Improvement of Switching Converter's Input Wave Using VIENNA Rectifier (VIENNA 정류기를 이용한 스위칭 컨버터의 입력 파형 개선)

  • Jung, Hun-Sun;Choi, Jae-Ho;Chung, Gyo-Bum
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.201-204
    • /
    • 2007
  • This paper proposes a improvement of switching converter's input wave form using VIENNA Rectifier(three-phase three-switch three-level PWM Rectifier). VIENNA Rectifier is based on the combination of a three-phase diode bridge and dc/dc boost converter. It can be available to get sinusoidal mains current, and low-blocking voltage stress on rower transistors. In addition, it can control output voltage.

  • PDF

Novel Converter Topology for a Three Phase to Three Phase PWM Rectifier/Inverter System (비용절감형 컨버터 구조를 갖는 3상-3상 PWM 정류기/인버터 시스템)

  • Kim, Gi-Taek;Park, Tae-Yeol;Lee, Hae-Chun
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.323-328
    • /
    • 1998
  • A current controlled VSI-PWM rectifier and inverter with capacitor dc link is regarded as one of the most promising structures for three-phase to three-phase to three-phase power conversion. This type of converter normally requires twelve switches for a rectifier and inverter composed of self turn-off switch such as a bi-polar transistor or IGBT with an anti-parallel diode. In this paper, a new three-phase to three-phase converter for ac motor drives is proposed. The proposed converter employs only eight switches and has the capability of delivering sinusoidal input currents with unity power factor and bidirectional power flow. This paper describes the feasibility and the operational limitations of the proposed structure. A mathematical model of the system is derived using generalized modulation theory and experimental results for steady state and dynamic behavior are presented to verify the developed model.

  • PDF