• 제목/요약/키워드: Three phase currents sampling

검색결과 16건 처리시간 0.025초

단일 전류 센서를 사용한 3상 전압형 PWM 컨버터의 제어 방식 비교 (Comparison of Three-Phase Voltage-Source PWM Converters Using a Single Current Sensor)

  • 이우철;이택기;현동석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권4호
    • /
    • pp.188-200
    • /
    • 2001
  • This paper presents a technique for reconstructing converter line currents using the information from a single current sensor in the DC-link for voltage-source PWM converters. When three-Phase input currents cannot be reconstructed, three methods to acquire the input current are compared. Two of them are methods of modifying the switching state (I, II), another is a method of using the predictive state observer. Also, compensation of sampling delay, and a simultaneous sample value of input currents in the center of a switching period are included. Suitable criteria for the comparison are identified, and the differences in the performance of these methods are investigated through experimental results for a typical V-S PWM converter rated at 10kVA.

  • PDF

Compensation PWM Technique for Extended Output Voltage Range in Three-Phase VSI Using Three Shunt Resistors

  • Shin, Seung-Min;Park, Rae-Kwan;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권4호
    • /
    • pp.1324-1331
    • /
    • 2014
  • This paper proposes a compensation PWM technique for the extension of output voltage ranges in three-phase VSI applications using three shunt resistors. The proposed technique aims to solve the dead zone, which occurs in high modulation indexes. In the dead zone, two phase currents cannot be sampled correctly, so that the three-phase VSI cannot be operated up to the maximum output voltage. The dead zone is analyzed in detail, and the compensation PWM algorithm is developed. The proposed algorithm is verified by numerical analysis and experimental results.

상전류 센서없는 3상 PWM 3상 정류기의 전류제어 (Current Control of Three-Phase PWM Rectifiers without Phase Current Sensors)

  • 임대식;이동춘
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권2호
    • /
    • pp.123-129
    • /
    • 2000
  • This paper proposes a novel current control method of three-phase PWM rectifiers using estimated currents without phase current sensors. The phase currents are reconstructed from switching states of the rectifier and the measured dc output currents. To eliminate the calculation time delay effect of the microprosessor, the current at the next sampling instant are predicted by a predictive state observer and then are used for feedback control. Experimental results show that the control performance of the proposed system is almost the same as that of the phase current sensor-based system.

  • PDF

Analysis of the Phase Current Measurement Boundary of Three Shunt Sensing PWM Inverters and an Expansion Method

  • Cho, Byung-Geuk;Ha, Jung-Ik;Sul, Seung-Ki
    • Journal of Power Electronics
    • /
    • 제13권2호
    • /
    • pp.232-242
    • /
    • 2013
  • To obtain phase currents information in AC drives, shunt sensing technology is known to show great performance in cost-effectiveness and therefore it is widely used in low cost applications. However, shunt sensing methods are unable to acquire phase currents in certain operation conditions. This paper deals with the derivation of the boundary conditions for phase current reconstruction in three-shunt sensing inverters and proposes a voltage injection method to expand the measurable areas. As the boundary conditions are deeply dependent on the switching patterns, they are typically analyzed on the voltage vector plane for space vector pulse width modulation (SVPWM) and discontinuous pulse width modulation (DPWM). In the proposed method, the voltage injection and its compensation are conducted within one sampling period. This guarantees fast current reconstruction and the injected voltage is decided so as to minimize the current ripple. In addition to the voltage injection method, a sampling point shifting method is also introduced to improve the boundary conditions. Simulation and experimental results are presented to verify the boundary condition derivation and the effectiveness of the proposed voltage injection method.

A Modified Sapce-Vector PWM Inverter without Phase Current Sensors

  • Joo, Hyeong-Gil;Shin, Hwi-Beom;Oh, In-Hwan;Youn, Myung-Joong
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권4호
    • /
    • pp.86-91
    • /
    • 1997
  • A method of detecting the three phase currents for a voltage-fed pusle width modulated(PWM) inverter is proposed, where only one current sensor is utilized on the dc-link. The proposed method has the constant sampling time by employing he modified space-vector PWM technique which generates the rearranged switching pattern to detect a phase current from ad dc-link current. Experimental results show that eh proposed scheme provides a very good detection method of three phase currents without phase current sensors. This method is very simple and has small detection errors.

  • PDF

공간 벡터 PWM 법을 적용한 3상 boost 콘버터의 역률개선 (Power factor correction of the three phase boost converter using space vector PWM strategy)

  • 백종현;홍성태;배상준;배영호;권순결
    • 전자공학회논문지S
    • /
    • 제34S권2호
    • /
    • pp.104-111
    • /
    • 1997
  • In this paper, three-phase PWM AC to DC boost converter that operates with unity power factor and sinusodial input line currents is presented. The current control of this converter is based on the space vector PWM strategy with fixed switching frequency and the line currents track to reference currents within one sampling time interval. By using this control strategy low ripples in the outut current and the voltage as well as fast dynamic response are achieved with small dc link cpacitance employed.

  • PDF

Fast Switching Direct Torque Control Using a Single DC-link Current Sensor

  • Wang, Wei;Cheng, Ming;Wang, Zheng;Zhang, Bangfu
    • Journal of Power Electronics
    • /
    • 제12권6호
    • /
    • pp.895-903
    • /
    • 2012
  • This paper presents a fast switching direct torque control (FS-DTC) using only a single DC-link current sensor. In FS-DTC, six new active voltage complex space vectors (CSVs) are synthesized by the conventional active voltage space vectors (SVs). The corresponding sectors are rotated in the anticlockwise direction by 30 degrees. A selection table is defined to select the CSVs. Based on the "Different Phase Mode", the output sequence of the selected CSV is optimized. Accordingly, a reconstruction method is proposed to acquire the phase currents. The core of the FS-DTC is that all of the three phase currents can be reliably reconstructed during every two sampling periods, which is the result of the fast switching between different phases. The errors between the reconstructed and actual currents are strictly limited in one sampling period. The FS-DTC has the advantages of the standard DTC scheme such as simple structure, quick torque response and robustness. As can be seen in the analysis, the FS-DTC can be thought of as an equivalent standard DTC scheme with 86.6% of the maximum speed, 173.2% of the torque ripple, and 115% of the response time of the torque. Based on a dSPACE DS1103 controller, the FS-DTC is implemented in an induction machine drive system. The results verify the effectiveness of the FS-DTC.

Reducing Common-Mode Voltage of Three-Phase VSIs using the Predictive Current Control Method based on Reference Voltage

  • Mun, Sung-ki;Kwak, Sangshin
    • Journal of Power Electronics
    • /
    • 제15권3호
    • /
    • pp.712-720
    • /
    • 2015
  • A model predictive current control (MPCC) method that does not employ a cost function is proposed. The MPCC method can decrease common-mode voltages in loads fed by three-phase voltage-source inverters. Only non-zero-voltage vectors are considered as finite control elements to regulate load currents and decrease common-mode voltages. Furthermore, the three-phase future reference voltage vector is calculated on the basis of an inverse dynamics model, and the location of the one-step future voltage vector is determined at every sampling period. Given this location, a non-zero optimal future voltage vector is directly determined without repeatedly calculating the cost values obtained by each voltage vector through a cost function. Without utilizing the zero-voltage vectors, the proposed MPCC method can restrict the common-mode voltage within ± Vdc/6, whereas the common-mode voltages of the conventional MPCC method vary within ± Vdc/2. The performance of the proposed method with the reduced common-mode voltage and no cost function is evaluated in terms of the total harmonic distortions and current errors of the load currents. Simulation and experimental results are presented to verify the effectiveness of the proposed method operated without a cost function, which can reduce the common-mode voltage.

입력 전류 파형과 역률 개선 제어기법에 의한 3상 PWM 컨버터 해석 (Analysis of a Three Phase PWM AC/DC Converter With Input Current Waveform and Power Factor Correction)

  • 이수흠;배영호;최종수;백종현
    • 조명전기설비학회논문지
    • /
    • 제12권1호
    • /
    • pp.93-102
    • /
    • 1998
  • 본 논문에서는 자기 소호 능력을 가지고 있는 전력용 반도체 소자로 구성된 3상 PWM Boost 컨버터를 이용하여 기존의 정류기에서 나타나는 문제점들을 해결하고, 입력 전류와 역률을 개선하기 위한 전류제어 기법을 제시한다. 이 컨버터의 전류제어는 부하에 관계없이 항상 일정한 스위칭 주파수로 동작되는 예측 전류제어 기법을 적용하고 있으며, 선전류는 한 샘플링 시간 구간내에서 기준 전류를 추종하게 된다. 이 제어 기법을 사용하므로서 입력 전류의 파형이 거의 정현파에 가까워져 역률도 거의 1로되고, 작은 DC링크 캐패시터를 적용함에도 불구하고 출력 전류와 전압의 리플이 적으며, 다이나믹 응답 특성도 매우 양호하게 나타난다.

  • PDF

예측 제어 기법을 적용한 3상 PWM AC/DC 콘버터의 역률개선 (Power Factor Correction of the Three Phase PWM AC/DC Converter Using Predicted Control Strategy)

  • 백종현;최종수;홍성태
    • 전자공학회논문지S
    • /
    • 제34S권11호
    • /
    • pp.156-163
    • /
    • 1997
  • Recently, the three phase AC to DC boost converter has become one of the most widely used power converters as DC power source in the industry applications. In this paepr, a three phase PWM AC toDC boost converter that operates with unity power factor and sinusodial input currents is presented. The current control of the converter is based onthe predicted current control strategy with fixed switching frequency and the input current tracks the reference cuent within one sampling time interval. Therefore, by using this control strategy low ripples in the output voltage, low harmonics in the input current and fast dynamic responses are achieved with a small capacitance in the DC link.

  • PDF