• Title/Summary/Keyword: Three dimensional structures

Search Result 1,599, Processing Time 0.035 seconds

Enhanced finite element modeling for geometric non-linear analysis of cable-supported structures

  • Song, Myung-Kwan;Kim, Sun-Hoon;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.22 no.5
    • /
    • pp.575-597
    • /
    • 2006
  • Enhanced three-dimensional finite elements for geometrically nonlinear analysis of cable-supported structures are presented. The cable element, derived by using the concept of an equivalent modulus of elasticity and assuming the deflection curve of a cable as catenary function, is proposed to model the cables. The stability functions for a frame member are modified to obtain a numerically stable solution. Various numerical examples are solved to illustrate the versatility and efficiency of the proposed finite element model. It is shown that the finite elements proposed in this study can be very useful for geometrically nonlinear analysis as well as free vibration analysis of three-dimensional cable-supported structures.

Efficient Analysis for a Three-Dimensional Multistory Structure with Wings (여러 Wing들로 구성된 3차원 구조물의 효율적인 해석모델)

  • Moon, Seong Kwon;Lee, Dong Guen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.429-438
    • /
    • 1994
  • Three-dimensional analyses of multistory structures with wings using finite element models require tedious input data preparation, longer computation time. and larger computer memory. So this study lays emphasis on the development of efficient analysis models for a three-dimensional multistory structure with wings, including in-plane deformation of floor slabs. Since a three-dimensional multistory structure with wings is regarded as a combination of wing structures and their junction in this study, the proposed analysis models are easily applicable to multistory structures with plans in the shape of letters Y, U, H, etc. Dynamic analyses results obtained using proposed models are in excellent agreement to those acquired using three-dimensional finite element models in terms of natural vibration periods, mode shapes and displacement time history.

  • PDF

Visualization of three-dimensional medical information based on Shear-Warp Volume Rendering (Shear-Warp Volume Rendering에 의한 3차원 의료영상 정보 표현)

  • Chae Eunmi;Huh Junsung;Sah Jongyoub
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.158-162
    • /
    • 1999
  • This thesis presents applications of three dimensional visualization technique based on shear-warp volume rendering to medical information. Volume rendering is compared to surface rendering and acceleration technique is also presented. The presented rendering techniques by using three-dimensional arrays of data are a widely used representation for computational fluid dynamics and geological structures as well as medical information.

  • PDF

Reliability Analysis of Three-Dimensional Temporary Shoring Structures Considering Bracing Member and Member Connection Condition (가새재 및 부재 연결 조건을 고려한 3차원 가설 동바리 구조물의 신뢰성 해석)

  • Ryu, Seon-Ho;Ok, Seung-Yong;Kim, Seung-Min
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.53-61
    • /
    • 2019
  • This study performs reliability analysis of three-dimensional temporary shoring structures with three different models. The first model represents a field model which does not have diagonal bracing members. The installation of bracing members is often neglected in the field for convenience. The second model corresponds to a design model which has the bracing members with the hinge connection of horizontal and bracing members at joints. The third model is similar to the second model but the hinge connection is replaced with partial rotational stiffness. The reliability analysis results revealed that the vertical members of the three models are safe enough in terms of axial force, but the vertical and horizontal members exhibit a big difference among the three models in terms of combination stress of axial force and bi-axial bending moments. The field model showed significant increase in failure probability for the horizontal member, and thus the results demonstrate that the bracing member should be installed necessarily for the safety of the temporary shoring structures.

Effect of soil in controlling the seismic response of three-dimensional PBPD high-rise concrete structures

  • Mortezaie, Hamid;Rezaie, Freydoon
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.217-227
    • /
    • 2018
  • In the last decades, valuable results have been reported regarding conventional passive, active, semi-active, and hybrid structural control systems on two-dimensional and a few three-dimensional shear buildings. In this research, using a three-dimensional finite element model of high-rise concrete structures, designed by performance based plastic design method, it was attempted to construct a relatively close to reality model of concrete structures equipped with Tuned Mass Damper (TMD) by considering the effect of soil-structure interaction (SSI), torsion effect, hysteresis behavior and cracking effect of concrete. In contrast to previous studies which have focused mainly on linearly designed structures, in this study, using performance-based plastic design (PBPD) design approach, nonlinear behavior of the structures was considered from the beginning of the design stage. Inelastic time history analysis on a detailed model of twenty-story concrete structure was performed under a far-field ground motion record set. The seismic responses of the structure by considering SSI effect are studied by eight main objective functions that are related to the performance of the structure, containing: lateral displacement, acceleration, inter-story drift, plastic energy dissipation, shear force, number of plastic hinges, local plastic energy and rotation of plastic hinges. The tuning problem of TMD based on tuned mass spectra is set by considering five of the eight previously described functions. Results reveal that the structural damage distribution range is retracted and inter-story drift distribution in height of the structure is more uniform. It is strongly suggested to consider the effect of SSI in structural design and analysis.

A Study on the Preprocessing for Finite Element Analysis of 3-Dimensional Structures.(With Focus on Geometric Modelling) (3차원 구조물의 유한요소해석 전처리에 관한 연구(기하학적 모델링을 중심으로))

  • 이재영;이진휴;한상기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.40-46
    • /
    • 1990
  • This paper introduces a geometric modelling system adopted in a newly developed preprocessor for finite element analysis of three dimensional structures. The formulation is characterized by hierarchical construction of structural model which consists of control points, curves, surfaces and solids. Various surface and solid modeling schemes based on blending functions and boundary representation are systematized for finite element mesh generation. The modeling system is integrated with model synthesis and operations which facilitate modelling of complex structures.

  • PDF

Identification and Three-Dimensional Characterization of Micropore Networks Developed in Granite using Micro-Focus X-ray CT

  • Choo, Chang-Oh;Takahashi, Manabu;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.179-189
    • /
    • 2014
  • We analyzed the three-dimensional distribution of micropores and internal structures in both fresh and weathered granite using micro-focus X-ray computed tomography (micro-CT). Results show that the pore radius in fresh granite is mostly in the range of $17-50{\mu}m$, the throat radius is in the range of $5-25{\mu}m$, and the coordination number (CN) of pores is less than 10. In contrast, the pore radius in weathered granite is mostly in the range of $20-80{\mu}m$, the throat radius is in the range of $8-30{\mu}m$, and the CN is less than 12. In general, a positive linear relationship exists between pore radius and CN. In addition, both the size and the density of pores increase with an increasing degree of rock weathering. The size of the throats that connect the pores also increases with an increasing degree of weathering, which induces fracture propagation in rocks. Micro-CT is a powerful and versatile approach for investigating the three-dimensional distributions of pores and fracture structures in rocks, and for quantitatively assessing the degree of pore connectivity.

Three-dimensional Numerical Analysis of Detonation Wave Structures in a Square Tube (정사각관 내 데토네이션 파 구조의 삼차원 수치 해석)

  • Cho, Deok-Rae;Won, Su-Hee;Shin, Jae-Ryul;Lee, Soo-Han;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • Three dimensional structures of detonation waves propagating in a square tube were investigated using a high resolution CFD code coupled with a conservation equation of reaction progress variable and an one-step irreversible reaction. The code were parallelized based on domain decomposition technique using MPI library. The computations were carried on an in-house Windows cluster with AMD processors. Three-dimensional unsteady analysis results in the smoked-foil records caused by the instabilities of the detonation waves, which showed the rectangular and diagonal modes of detonation instabilities depending on the initial condition of disturbances and the spinning detonation for case of small reaction constant.

Investigation into the fabrication of scaffolds using bio-compatible polymer (생체 적합성 고분자 재료를 이용한 다공성 지지체 제작에 관한 연구)

  • Park S.H.;Kim H.C.;Yang D.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.231-235
    • /
    • 2005
  • Most tissue engineering strategies for creating functional replacement tissues or organs rely on the application of temporary three-dimensional scaffolds to guide the proliferation and spread of seeded cells in vitro and in vivo. Scaffolds should be satisfied following requirements; macrostructure to promote cell proliferation, pore interconnectivity, pore size ranging from 200 to $400{\mu}m$, surface chemistry and mechanical properties. Rapid prototyping techniques have often been used as an useful process that fabricates scaffolds with complex structures. In this study, a new process to fabricate a three-dimensional scaffolds using bio-compatible polymer has been developed. It employs a highly accurate three-dimensional positioning system with pressure-controlled syringe to deposit biopolymer structures. The pressure-activated microsyringe is equipped with fine-bore nozzles of various inner-diameters. In order to examine relationships between line width and process parameters such as nozzle height, applied pressure, and speed of needle, experiments were carried out. Based on the experimental results, three-dimensional scaffold was fabricated using the apparatus. It shows the validity of the proposed process.

  • PDF

Prediction of Motion Responses between Two Offshore Floating Structures in Waves

  • Kim, Mun-Sung;Ha, Mun-Keun
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.3
    • /
    • pp.13-25
    • /
    • 2002
  • In this paper, the motion responses with hydrodynamic interaction effect between two off-shore floating structures in various heading waves are studied by using a linearized three-dimensional potential theory. Numerical calculations using three-dimensional pulsating source distribution techniques have been carried out for twelve coupled linear motion responses and relative motions of the barge and the ship in oblique waves. The computational results give a good correlation with the experimental results and also with other numerical results. As a result, the present computational tool can be used effectively to predict the motion responses of multiple offshore floating structures in waves.