• 제목/요약/키워드: Three dimensional image

검색결과 1,511건 처리시간 0.029초

A camera calibration technique and landscape simulation

  • Fujimoto, Kazutaka;Watase, Motoaki;Yamamoto, Masayuki;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.295-298
    • /
    • 1995
  • In this paper, one simple technique to calibrate the system setting of the three-dimensional measuring system is presented. Due to this technique, the three-dimensional shape of the huge structures and the buildings can be readily obtained. This technique is applied to the three-dimensional landscape simulation. Two examples are shown in this paper.

  • PDF

변형 삼각간섭계를 이용한 3차원 영상의 광학적 구현 (Optical Implementation of Three-Dimensional Image using Modified Triangular Interferometer)

  • 김수길
    • 조명전기설비학회논문지
    • /
    • 제18권1호
    • /
    • pp.15-20
    • /
    • 2004
  • 복소홀로그램을 광학적으로 구현할 수 있는 시스템을 제안하고, 제안된 시스템이 복소홀로그램을 표현할 수 있다는 것을 이론적으로 입증하였다. 그리고, 변형 삼각간섭계를 이용하여 3차원 영상의 복소홀로그램을 생성하고, 이를 수치적 및 광학적으로 복원한 3차원 영상을 제시하고 분석하였다.

3D Holographic Image Recognition by Using Graphic Processing Unit

  • Lee, Jeong-A;Moon, In-Kyu;Liu, Hailing;Yi, Faliu
    • Journal of the Optical Society of Korea
    • /
    • 제15권3호
    • /
    • pp.264-271
    • /
    • 2011
  • In this paper we examine and compare the computational speeds of three-dimensional (3D) object recognition by use of digital holography based on central unit processing (CPU) and graphic processing unit (GPU) computing. The holographic fringe pattern of a 3D object is obtained using an in-line interferometry setup. The Fourier matched filters are applied to the complex image reconstructed from the holographic fringe pattern using a GPU chip for real-time 3D object recognition. It is shown that the computational speed of the 3D object recognition using GPU computing is significantly faster than that of the CPU computing. To the best of our knowledge, this is the first report on comparisons of the calculation time of the 3D object recognition based on the digital holography with CPU vs GPU computing.

Local damage detection of a fan blade under ambient excitation by three-dimensional digital image correlation

  • Hu, Yujia;Sun, Xi;Zhu, Weidong;Li, Haolin
    • Smart Structures and Systems
    • /
    • 제24권5호
    • /
    • pp.597-606
    • /
    • 2019
  • Damage detection based on dynamic characteristics of a structure is one of important roles in structural damage identification. It is difficult to detect local structural damage using traditional dynamic experimental methods due to a limited number of sensors used in an experiment. In this work, a non-contact test stand of fan blades is established, and a full-field noncontact test method, combined with three-dimensional digital image correlation, Bayesian operational modal analysis, and damage indices, is used to detect local damage of a fan blade under ambient excitation without use of baseline information before structural damage. The methodology is applied to detect invisible local damage on the fan blade. Such a method has a seemingly high potential as an alternative to detect local damage of blades with complex high-precision surfaces under extreme working conditions because it is a noncontact test method and can be used under ambient excitation without human participation.

수치사진측량 기법을 이용한 항공사진의 정사투영사진 지도 생성에 관한 연구 (A Study on the Generation of Three Dimensional Orthophoto Map from Aerial Photograph by Digital Photogrammetry)

  • 조재호;윤종성
    • 한국측량학회지
    • /
    • 제16권2호
    • /
    • pp.203-211
    • /
    • 1998
  • 정사투영사진 지도는 입체영상에 존재하는 공액점을 수치적으로 탐색하여 높이를 결정하는 수치사진측량 방법을 사용하여 제작되며, 공액점을 자동으로 결정하기 위한 수치영상정합 방법에 대한 많은 연구가 진행 중이다. 본 연구에서는 수치영상정합에서 공통적으로 사용되는 영상 피라미드의 4가지 축척 계수 변화와 8가지 기준영역의 크기의 변화에 따른 영역기반정합의 정확도에 미치는 영향을 고찰하였다. 각 방법에 대한 영상정합 결과는 l/5,000 수치지도 자료와 비교하였고, 영상정합의 성공률을 분석하여 최적 기준영역의 크기를 결정하였다. 수치지형모델은 결정된 영상정합 결과와 광속조정법을 이용하여 생성하였으며, 수치표고모델과 정사투영사진을 이용하여 정사투영사진 지도를 제작하였다.

  • PDF

광공진 현상을 이용한 입체 영상센서 및 신호처리 기법 (Optical Resonance-based Three Dimensional Sensing Device and its Signal Processing)

  • 박용화;유장우;박창영;윤희선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.763-764
    • /
    • 2013
  • A three-dimensional image capturing device and its signal processing algorithm and apparatus are presented. Three dimensional information is one of emerging differentiators that provides consumers with more realistic and immersive experiences in user interface, game, 3D-virtual reality, and 3D display. It has the depth information of a scene together with conventional color image so that full-information of real life that human eyes experience can be captured, recorded and reproduced. 20 Mega-Hertz-switching high speed image shutter device for 3D image capturing and its application to system prototype are presented[1,2]. For 3D image capturing, the system utilizes Time-of-Flight (TOF) principle by means of 20MHz high-speed micro-optical image modulator, so called 'optical resonator'. The high speed image modulation is obtained using the electro-optic operation of the multi-layer stacked structure having diffractive mirrors and optical resonance cavity which maximizes the magnitude of optical modulation[3,4]. The optical resonator is specially designed and fabricated realizing low resistance-capacitance cell structures having small RC-time constant. The optical shutter is positioned in front of a standard high resolution CMOS image sensor and modulates the IR image reflected from the object to capture a depth image (Figure 1). Suggested novel optical resonator enables capturing of a full HD depth image with depth accuracy of mm-scale, which is the largest depth image resolution among the-state-of-the-arts, which have been limited up to VGA. The 3D camera prototype realizes color/depth concurrent sensing optical architecture to capture 14Mp color and full HD depth images, simultaneously (Figure 2,3). The resulting high definition color/depth image and its capturing device have crucial impact on 3D business eco-system in IT industry especially as 3D image sensing means in the fields of 3D camera, gesture recognition, user interface, and 3D display. This paper presents MEMS-based optical resonator design, fabrication, 3D camera system prototype and signal processing algorithms.

  • PDF

CT절편두께와 RP방식이 3차원 의학모델 정확도에 미치는 영향에 대한 연구 (Influence of slice thickness of computed tomography and type of rapid protyping on the accuracy of 3-dimensional medical model)

  • 엄기두;이병도
    • Imaging Science in Dentistry
    • /
    • 제34권1호
    • /
    • pp.13-18
    • /
    • 2004
  • Purpose : This study was to evaluate the influence of slice thickness of computed tomography (CT) and rapid protyping (RP) type on the accuracy of 3-dimensional medical model. Materials and Methods: Transaxial CT data of human dry skull were taken from multi-detector spiral CT. Slice thickness were 1, 2, 3 and 4 mm respectively. Three-dimensional image model reconstruction using 3-D visualization medical software (V-works /sup TM/ 3.0) and RP model fabrications were followed. 2-RP models were 3D printing (Z402, Z Corp., Burlington, USA) and Stereolithographic Apparatus model. Linear measurements of anatomical landmarks on dry skull, 3-D image model, and 2-RP models were done and compared according to slice thickness and RP model type. Results: There were relative error percentage in absolute value of 0.97, 1.98,3.83 between linear measurements of dry skull and image models of 1, 2, 3 mm slice thickness respectively. There was relative error percentage in absolute value of 0.79 between linear measurements of dry skull and SLA model. There was relative error difference in absolute value of 2.52 between linear measurements of dry skull and 3D printing model. Conclusion: These results indicated that 3-dimensional image model of thin slice thickness and stereolithographic RP model showed relative high accuracy.

  • PDF

가상 홀로그램 - 3차원 이미지의 새로운 표현 방법 (Virtual Holography - A Novel Three-dimensional Image Representation)

  • Kim, Myoung-Jun;Wang, Chi-Kuo-Gregory;Woo, Tony-C.
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 1997년도 학술대회
    • /
    • pp.79-85
    • /
    • 1997
  • Virtual holography is a methodology of synthesizing apparent three-dimensional images from two-dimensional photographs. Since the input is photographic images of real objects, the degree of realism exceeds that offered by any computer-aided design software. The three-dimensional appearance is given in real-time by images from arbitrary viewing directions. If infinitely many photographs were taken and pasted together, virtual holography would have been trivial. But, the (infinite) storage requirement would prohibit such an attempt.

  • PDF

Application of 3D Simulation Surgery to Orbital Wall Fracture : A preliminary Case Study

  • Choi, Jong-Woo
    • Journal of International Society for Simulation Surgery
    • /
    • 제1권1호
    • /
    • pp.16-18
    • /
    • 2014
  • The orbit has a very special anatomical structure. The complex anatomical structure should be restored when we encounter the patient with orbital wall fracture. Unless these specific anatomy were reconstructed well, the patient should suffer from various complications such enophthalmos, diplopia or orbital deformity. In addition, because the patient has a his own specific orbital shape, individualized approach will be necessary. The aim of this trial is to try to restore the original orbit anatomy as possible based on the mirrored three dimensional CT images based on the computer simulation. Preoperative computed tomography (CT) data were processed for the patient and a rapid prototyping (RP) model was produced. At the same time, the uninjured side was mirrored and superimposed onto the traumatized side, to create a mirror-image of the RP model. In order to restore the missing skipped images between the cuts of CT data because of the thinness of the orbital walls, we manipulated the DICOM data for imaging the original orbital contour using the preoperatively manufactured mirror-image of the RP model. And we fabricated Titanium-Medpor to reconstruct three-dimensional orbital structure intraoperatively. This prefabricated Titanium-Medpor was then inserted onto the defected orbital wall and fixed. Three dimensional approach based on the computer simulation turned out to be very successful in this patient. Individualized approach for each patient could be an ideal way to manage the traumatic patients in near future.

탈 축 홀로그램 합성을 이용한 쌍 영상 잡음 제거와 3차원 홀로그램 디스플레이 (Three-dimensional Holographic Display with Twin Image Noise Rejection Using Off-axis Hologram Converting)

  • 김유석;김태근;김진태
    • 한국광학회지
    • /
    • 제20권6호
    • /
    • pp.328-333
    • /
    • 2009
  • 본 논문에서는 복소수 홀로그램을 탈 축 홀로그램으로 변환해 쌍 영상 잡음 없이 3차원 홀로그램 디스플레이를 구현하는 방법 을 제안하고 실연하였다. 이러한 기술을 구현하기 위해, 서로 다른 깊이에 위치하는 슬라이드 패턴으로 구성된 3차원 물체의 복소수 홀로그램을 광 스캐닝 홀로그램 시스템을 이용해 추출한 후, 추출된 복소수 홀로그램에 공간 캐리어를 수치적인 방법으로 인가하고 실수 부분만을 추출해 복소수 홀로그램을 탈 축 홀로그램으로 변환한다. 변환된 탈 축 홀로그램을 진폭만을 변조하는 공간 광 변조기에 인가하고, 시준된 레이저 빔을 공간 광 변조기에 투사하여 탈 축 홀로그램을 복원하는 방식으로 3차원 디스플레이를 구현한다.