• 제목/요약/키워드: Three dimensional finite element analysis and Stress distribution

검색결과 238건 처리시간 0.037초

Three-dimensional finite element analysis of the stress distribution and displacement in different fixation methods of bilateral sagittal split ramus osteotomy

  • Yun, Kyoung In;Cho, Young-Gyu;Lee, Jong-Min;Park, Yoon-Hee;Park, Myung-Kyun;Park, Je Uk
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제38권5호
    • /
    • pp.271-275
    • /
    • 2012
  • Objectives: This study evaluated a range of fixation methods to determine which is best for the postoperative stabilization of a mandibular osteotomy using three-dimensional finite element analysis of the stress distribution on the plate, screw and surrounding bone and displacement of the lower incisors. Materials and Methods: The model was generated using the synthetic skull scan data, and the surface model was changed to a solid model using software. Bilateral sagittal split ramus osteotomy was performed using the program, and 8 different types of fixation methods were evaluated. A vertical load of 10 N was applied to the occlusal surface of the first molar. Results: In the case of bicortical screws, von-Mises stress on the screws and screw hole and deflection of the lower central incisor were minimal in type 2 (inverted L pattern with 3 bicortical repositioning screws). In the case of plates, von-Mises stress was minimal in type 8 (fixation 5 mm above the inferior border of the mandible with 1 metal plate and 4 monocortical screws), and deflection of the lower central incisor was minimal in types 6 (fixation 5 mm below the superior border of the mandible with 1 metal plate and 4 monocortical screws) and 7 (fixation 12 mm below the superior border of the mandible with 1 metal plate and 4 monocortical screws). Conclusion: Types 2 and 6 fixation methods provide better stability than the others.

하악 총의치 교합형태에 따른 하부조직에 미치는 교합력 양태의 3차원적 유합요소법 해석 (THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF MANDIBULAR STRESSES OF COMPLETE DENTURE OCCLUSION)

  • 이영수;유광희
    • 대한치과보철학회지
    • /
    • 제30권2호
    • /
    • pp.286-318
    • /
    • 1992
  • The objective of preventive dentistry is the maintenance of a healthy dentition for the life of a patient. Unfortunately, if an individual has not received the benefit of a comprehensive program of preventive dentistry and has finally reached the edentulous state, as a consequence, he receives a set of complete denture. Dentures are mechanical devices and subject to the principles of mechanics. In some cases, the general health and nutritional status of the patient are felt to be the causative factors. But, the most important thing in residual ridge resorption is felt to be caused by the unequal distribution of functional forces. This study was to analyze mandibular stresses of complete denture occlusion by three dimensional finite element method. The results were as follows ; 1. As deformation and stress distribution of the complete denture of the mandible were concentrated on the upper lingual side of the mandible, alveolar ridge resorption of the mandible occurred from lingual side to labio-buccal side. 2. Analyzing by three dimensional F. E. M., the mandible is a very effective form for tolerating stress and deformation biomechanically. 3. According to the concentration of stress distibution in the upper buccal side of the lower posteriors, buccal shelf area must be a primary stress bearing area in the lower complete denture. 4. Lower complete denture moved horizontally to the balancing side under lateral occlusal force. 5. Bilateral balanced occlusion should be constructed in the complete denture for denture stability, especially in the protrusive movement. 6. Physical property of the denture base material was as important for stress distribution in the denture base as or even more than that in the mandible. 7. Impression technique is very important because of most of stress was concentrated between them due to close contact of the mandible and the denture base.

  • PDF

골유착성 임플랜트 보철치료시 자연지대치와의 연결형태에 관한 유한요소적 응력분석 연구 (A STUDY ON THE CONNECTION MODALITY BETWEEN IMPLANT AND TOOTH IN OSSEOINTEGRATED PROSTHETIC TREATMENT USING FINITE ELEMENT ANALYSIS)

  • 김용호;김영수
    • 대한치과보철학회지
    • /
    • 제29권3호
    • /
    • pp.1-32
    • /
    • 1991
  • Tho osseointegrated dental prosthetic treatment has develped for the edentulous patient with severely resorbed alveolar ridge, and has given us a successful clinical results to date. Nowadays the partially edentulism is included among the indications of the osseointegrated prosthetic treatment. The purpose of this study was to analyze the stress distribution at supporting bone according to the types of connection modality between implant and tooth in the superstructure. Two dimensional finite element stress analysis was applied for this study. FEM models were created using software Super SAP for MBM 16bit personal computer. Three modalities of connection were modeled and analyzed under load condition. The results were as follws: 1. The stress develped at tooth and implant in the cancellous bone was lower in the case of rigid connection than in the case of norigid connection, but higher between the two implants in the case of rigid connection than in the case of nonrigid connection. 2. The stress developed at the cortical bone and at the supporting bone interface was lower in the case of rigid connection than in the case of nonrigid connection 3. The stress developed at the supporting tissue interface of the implant nearby the tooth, was lower in the case of rigid connection than in the case of nonrigid connection. 4. The stress developed at the supporting tissue interface of posteriormost implant, was same between the cases of rigid and nonrigid connection. 5. The stress distribution related to the freestanding case was generally similar to the stress distribution pattern of nonrigid connection case. 6. The magnitude of applied load which produces deformation within elastic limit, had influence on the absolute value of stress, but had no influence on the pattern of stress distribution of the same case.

  • PDF

Method of Deciding Elastic Modulus of Left and Right Ventricle Reconstructed by Echocardiography Using Finite Element Method and Stress Analysis

  • Han, Geun-Jo;Kim, Sang-Hyun
    • 대한의용생체공학회:의공학회지
    • /
    • 제15권2호
    • /
    • pp.217-224
    • /
    • 1994
  • In order to study the shape and dimensions of heart, a procedure to reconstruct a three dimensional left ventricular geometry from two dimensional echocardiographic images was studied including the coordinate transformation, curve fitting and interpolation utilizing three dimensional position registration arm. Nonlinear material property of the left ventricular myocardium was obtained by finite element method performed on the reconstructed geometry and by optimization techniques which compared the computer predicted 3D deformation with the experimentally determined deformation. Elastic modulus ranged from 3.5g/$cm^2$ at early diastole to l53g/$cm^2$ at around end diastole showing slightly nonlinear relationship between the modulus and the pressure. Afterwards using the obtained nonlinear material propertry the stress distribution related with oxyzen consumption rate was analyzed. The maximum and minimum of ${\sigma}_1$ (max. principal stress) occurred at nodes on the second level intersection points of x-axis with endocardium and with epicardium, respectively. And the tendency of the interventricular septum to be flattened was observed from the compressive ${\sigma}_1$ on the anterior, posterior nodes of left ventricle and from the most significant change of dimension in $D_{RL}$ (septal-lateral dimension of right ventricle).

  • PDF

터보 디젤엔진 피스톤의 열응력 해석에 관한 연구 (A Study on the Thermal Stress Analysis of a Piston in a Turbocharged Diesel Engine)

  • 국종영
    • 한국자동차공학회논문집
    • /
    • 제9권2호
    • /
    • pp.92-98
    • /
    • 2001
  • We determined the transfer coefficient through the analysis of three dimensional temperature distribution in comparison with the measured temperature on the piston in the turbocharged diesel engine. And we analyzed the thermal stress and the thermal deformation with that heat transfer coefficient by using finite element method. According to this results, we found that maximum tempetature range of the piston appeared at the upper part of the piston crown and that the heat transfer coefficient of the upper part of the piston is smaller than that of the lower one. It showed that the maximum thermal deformation is shown at the edge of the upper part of piston and that the maximum thermal stress was shown on the lower part of the piston crown. Finally, we defined the method of determination of a piston heat transfer analysis by using measured temperature on the piston and analyzed temperature with finite element method.

  • PDF

터보과급 대형 CNG기관 피스톤의 온도분포와 열응력 해석 (Numerical Analysis for Temperature Distribution and Thermal Stresses in a Turbocharged Large CNG Engine Piston)

  • 김양술;안수철
    • 한국가스학회지
    • /
    • 제12권4호
    • /
    • pp.58-62
    • /
    • 2008
  • 본 연구에서는 직렬 6기통 압축천연가스 엔진의 피스톤에 대한 3차원 모델링을 수행하여 정상상태에서의 온도분포 및 그에 따른 열응력과 변형을 예측하고, 이를 기존의 해석결과와 비교 검토를 통하여 피스톤의 유한요소해석의 기준을 구축하고자 한다. 또한 냉각시스템의 성능이 피스톤의 열부하에 미치는 영향을 평가하기 위하여 냉각수 온도의 변화에 따른 피스톤의 온도분포 및 열응력 분포 그리고 그에 따른 변형을 분석하였다. 분석결과 피스톤의 최고 온도는 크라운부의 중앙에서 나타났고, 피스톤의 크라운 하부에서 최대 열응력이 발생하였다.

  • PDF

부분 무치악 임플랜트 보철 수복시 자연치와의 비고정성 연결형태에 따른 3차원 유한요소법적 연구 (THE THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE PARTIALLY EDENTULOUS IMPLANT PROSTHESIS WITH VARYING TYPES OF NON-RIGID CONNECTION)

  • 이선아;정재헌
    • 대한치과보철학회지
    • /
    • 제34권1호
    • /
    • pp.101-124
    • /
    • 1996
  • In this study, we designed the finite element models of mandible with varying their connecting types between the prosthesis on implant fixture and 2nd premolar, which were free-standing case(Mf), precision attachment case(Mp), semiprecision attachment case(Ms) and telescopic case(Mt). The basic model of the designed finite element models, which contained a canine and the 1st & 2nd premolar, was implanted in the edentulous site of the 1st & 2nd molar by two implant fixtures. We applied the load in all models by two ways. A vertical load of 200N was applied at each central fossa of 2nd premolar and 1st implant. A tilting load of 20N with inclination of $45^{\circ}$ to lingual side was applied to buccal cusp tips of each 2nd premolar and 1st implant. And then we analyzed three-dimensional finite element models, making a comparative study of principal stress and displacement in four cases respectively. Three-dimensional finite element analysis was performed for the stress distribution and the displacement using commercial software(IDEAS program) for SUN-SPARC workstation. The results were as follows : 1 Under vertical load or tilting load, maximum displacement appeared at the 2nd premolar. Semiprecision case showed the largest maximum displacement, and maximum displacement reduced in the order of precision attachment, free-standing and telescopic case. 2. Under vertical load. the pattern of displacement of the 1st implant appeared mesio-inclined because of the 2nd implant splinted together. But displacement pattern of the 2nd premolar varied according to their connection type with prosthesis. The 2nd premolar showed a little mesio-inclined vertical displacement in case of free-standing and disto-inclined vertical displacement due to attachment in case of precision and semiprecision attachment. In telescopic case, the largest mesio-inclined vertical displacement has been shown, so, the 1st premolar leaned mesial side. 3. Under tilting load, The pattern of displacement was similar in all four cases which appeared displaced to lingual side. But, the maximum displacement of 2nd premolar appeared larger than that of the first implant. Therefore, there was large discrepancy in displacement between natural tooth and implant during tilting load. 4. Under vertical load, the maximum compressive stress appeared at the 1st implant's neck. Semiprecision attachment case showed the largest maximum compressive stress, and the maximum compressive stress reduced in the order of precision attachment, telescopic and free-standing case. 5 Under vertical load, the maximum tensile stress appeared at the 2nd implant's distal neck. Semiprecision attachment case showed the largest maximum tensile stress, and the maximum tensile stress reduced in the order of precision attachment, telescopic and free-standing case. 6. Under vertical load or tilting load, principal stress appeared little between natural tooth & implant in free-standing case, but large principal stress was distributed at upper crown and distal contact site of the 2nd premolar in telescopic case. Principal stress appeared large at keyway & around keyway of distal contact site of the 2nd premolar in precision and semiprecision attachment case, appearing more broad and homogeneous in precision attachment case than in semiprecision attachment case.

  • PDF

수복재료가 5급 복합레진 수복물의 응력분포에 미치는 영향에 관한 3차원유한요소법적 연구 (THE EFFECT OF RESTORATIVE MATERIALS ON THE STRESS DISTRIBUTION OF CLASS V COMPOSITE RESIN RESTORATIONS - A 3D FINITE ELEMENT INVESTIGATION)

  • 안형렬;김현철;허복;박정길
    • Restorative Dentistry and Endodontics
    • /
    • 제31권1호
    • /
    • pp.20-29
    • /
    • 2006
  • 임상에서 5급 와동의 형태 중에 흔히 발견되는 혼합형 (교합면 쪽은 쐐기형이고 치경부 쪽은 접시형)의 와동이 형성된 상악 제 2 소구치에 170 N의 하중을 가했을 때, 수복 전 후에 나타나는 와동변연부와 와동벽, 그리고 수복물의 응력 분포를 3차원적 유한요소 분석법으로 조사한 결과 다음과 같은 결론을 얻었다. 1. 수복 전에 비해 수복 후 굽힘응력 이 집중되는 백악법랑경계와 와동저 선각부위 에서 응력이 감소하였다. 2. 수복 전에 비해 수복 후 교합면과 치경부의 와동변연과 와동벽에서는 응력이 증가하였다. 3. 혼합형 레진과 혼합형 / 흐름성 레진으로 수복하였을 때 흐름성 레진으로 수복한 경우보다 백악법랑경계와 와동저 선각부위에서 응력이 더 감소하였다. 4. 혼합형 레진과 혼합형 / 흐름성 레진으로 수복하였을때 흐름성 레진으로 수복한 경우보다 교합면과 치경부의 와동변연과 와동벽에서 응력이 더 증가하였다.

치조골 흡수가 포오스트로 인한 치근내 응력에 미치는 영향에 관한 삼차원 유한요소법 분석 (THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE EFFECTS OF ALVEOLAR BONE LOSS ON STRESS DISTRIBUTION IN POST-RECONSTRUCTED TEETH)

  • 이기영;장익태
    • 대한치과보철학회지
    • /
    • 제35권4호
    • /
    • pp.674-696
    • /
    • 1997
  • There're many cases that should be reconstructed with post and core when clinical crown is destructed. But this post and core restoration may cause damaging stress on the teeth. Previous finite element study was restricted to normal bone model relatively close to cemen-toenamel junction. Moreover, the test of a model with diminished bone support was rare. The purpose of this study is to test the effects of alveolar bone loss on the magnitude, stress distribution and displacement of post reconstructed teeth. In this study, it was assumed that the coronal portion of upper incisor was severely destructed. After conventional endodontic treatment, it was restored with post and core. The PFM restoration was made on it. This crown was cemented with ZPC. Alveolar bone was classified by 4 types of bone, such as normal, 2 mm, 4 mm, 6 mm bone, according to the bone loss. Meanwhile, the material of post are divided into 2 types of materials, such as gold, co-cr. Force was applied to two directions. One was fuctional maximum bite force (300 N) applied to the spot just lingual to the incisal edge with the angle of 45 degree to the long axis of the tooth, and the other one was horizontal force (300 N) applied to the labial surface. The results analyzed with three dimensional finite element method were as follows : 1. Stress was concentrated on the adjacent dentin of the post apex, one third portion of the post apex and the labial & lingual mid-portion of the root in all case. The stress of middle third of the root was apparently concentrated on the labial aspect. 2. The stress on adjacent dentin of the post apex and one third of the post apex increased as alveolar bone height moved apically. This increase was dramatic beyond 4 mm bone loss model. 3. The stress of the post apex was spreaded to the middle third of the post and greater than gold post in the case of metal post. 4. The displacement of the neck of post was the greatest in one of the post-cement interface and this increased as alveolar bone height moved apically. Besides the displacement of the metal post is slightly lower than one of the gold post.

  • PDF

변연골 흡수가 내측연결 임플란트 매식체의 응력분포에 미치는 영향 (Three-dimensional finite element analysis for influence of marginal bone resorption on stress distribution in internal conical joint type implant fixture)

  • 윤미정;윤민철;엄태관;허중보;정창모
    • 대한치과보철학회지
    • /
    • 제50권2호
    • /
    • pp.99-105
    • /
    • 2012
  • 연구 목적: 지금까지 성공적인 임플란트 치료를 위해 많은 연구가 진행되어 왔으며, 임플란트 주변 골 흡수 현상에 대한 연구는 매우 관심이 높은 분야 중 하나이다. 이에 본 연구에서는 삼차원 유한요소응력분석을 이용하여 변연골 흡수가 내측연결 임플란트 매식체의 기계적 안정성에 미치는 영향을 간접적으로 확인하고자 하였다. 연구 재료 및 방법: 악골에 식립된 내측연결 형태의 임플란트 매식체에 티타늄 소재의 임플란트 지대주를 지대주 나사로 연결하고 상부에 금합금관을 장착하는 삼차원 유한요소모형을 설계하였다. 0, 1, 2, 3 mm의 변연골 흡수 상태를 적용하고, 교합면 중심에서부터 3 mm 편측에 300 N의 수직 하중을 가하여 임플란트 매식체에 발생하는 최대 주 응력을 계산하였다. 결과: 유한요소분석결과 변연골 흡수에 따른 임플란트 매식체의 최대 주응력 분포는 유사한 양상을 보였으며, 임플란트 매식체 상단에서 가장 높은 응력 집중이 나타났다. 최대 주응력은 처음 1 mm 변연골 흡수를 가정하였을 때 가장 크게 증가하였고, 이후 변연골 흡수가 증가할수록 응력은 증가하였지만 응력 증가의 폭은 감소하는 경향을 보였다. 결론: 이러한 결과로부터 내측연결 임플란트에서 매식체 두께가 얇은 경부의 노출은 변연골 흡수로 인한 응력 증가에 가장 큰 원인임을 알 수 있었으며, 매식체의 변형, 균열 및 파절 등의 기계적 실패를 감소시키기 위해서는 이에 대한 외과적, 보철적 고려가 필요할 것으로 생각된다.