Browse > Article
http://dx.doi.org/10.4047/jkap.2012.50.2.99

Three-dimensional finite element analysis for influence of marginal bone resorption on stress distribution in internal conical joint type implant fixture  

Yun, Mi-Jung (Department of Prosthodontics, School of Dentistry, Pusan National University)
Yoon, Min-Chul (Department of Prosthodontics, School of Dentistry, Pusan National University)
Eom, Tae-Gwan (Osstem Implant Research Center)
Huh, Jung-Bo (Department of Prosthodontics, School of Dentistry, Pusan National University)
Jeong, Chang-Mo (Department of Prosthodontics, School of Dentistry, Pusan National University)
Publication Information
The Journal of Korean Academy of Prosthodontics / v.50, no.2, 2012 , pp. 99-105 More about this Journal
Abstract
Purpose: The change of the marginal bone around dental implants have significance not only for the functional maintenance but also for the esthetic success of the implant. The purpose of this study was to investigate the load transfer of internal conical joint type implant according to marginal bone resorption by using the three-dimensional finite element analysis model. Materials and methods: The internal conical joint type system was selected as an experimental model. Finite element models of bone/implant/prosthesis complex were constructed. A load of 300 N was applied vertically beside 3 mm of implant axis. Results: The pattern of stress distribution according to marginal bone resorption was similar. The maximum equivalent stress of implant was increase according to marginal bone resorption and the largest maximum equivalent stress was shown at model of 1 mm marginal bone resorption. Although marginal bone loss more than 1mm was occurred increasing of stress, the width of the stress increase was decreasing. Conclusion: According to these results, the exposure of thin neck portion of internal conical joint type implant is most important factor in stress increasing.
Keywords
Internal conical joint type implant; Marginal bone resoprtion; Three-dimensional finite element analysis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Welsch G, Boyer R, Collings EW. Materials properties handbook: titanium alloys. Materials Park, OH; ASM International; 1994.
2 Holt JM, Mindlin H, Ho CY, Purdue University. Center for information and numerical data analysis and synthesis. Structural alloys handbook. West Lafayette, IN; CINDAS/Purdue University; 1994.
3 O'Brein WJ. Dental materials and their selection. 2nd ed. Chicago; Quintessence pub. Co.; 1997, p. 259-72.
4 Cibirka RM, Razzoog ME, Lang BR, Stohler CS. Determining the force absorption quotient for restorative materials used in implant occlusal surfaces. J Prosthet Dent 1992;67:361-4.   DOI   ScienceOn
5 Chun HJ, Shin HS, Han CH, Lee SH. Influence of implant abutment type on stress distribution in bone under various load ing conditions using finite element analysis. Int J Oral Maxillofac Implants 2006;21:195-202.
6 Choi JU, Jeong CM, Jeon YC, Lim JS, Jeong HC, Eom TG. Influnence of tungsten carbide/carbon coating on the preload of implant abutment screws. J Korean Acad Prosthodont 2006;44: 229-42.
7 Lim JY, Cho JH, Jo KW. Influence of crestal module design on marginal bone stress around dental implant. J Korean Acad Prosthodont 2010;48:224-31.   DOI   ScienceOn
8 Rangert B, Krogh PH, Langer B, Van Roekel N. Bending overload and implant fracture: a retrospective clinical analysis. Int J Oral Maxillofac Implants 1995;10:326-34.
9 Norton RL. Machine design: and integrated approach. 1th ed. Pearson eduction; 1995. p. 43-5.
10 Dowling NE. Mechanical behavior of materials : engineering for deformation, fracture, and fatigue. Englewood Cliffs; Prentice- Hall International Inc; 1993. p. 252.
11 Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 2003;18:357-68.
12 Petrie CS, Williams JL. Comparative evaluation of implant designs: influence of diameter, length, and taper on strains in the alveolar crest. A three-dimensional finite-element analysis. Clin Oral Implants Res 2005;16:486-94.   DOI   ScienceOn
13 Hanggi MP, Hanggi DC, Schoolfield JD, Meyer J, Cochran DL, Hermann JS. Crestal bone changes around titanium implants. Part I: A retrospective radiographic evaluation in humans comparing two non-submerged implant designs with different machined collar lengths. J Periodontol 2005;76:791-802.   DOI   ScienceOn
14 Holmgren EP, Seckinger RJ, Kilgren LM, Mante F. Evaluating parameters of osseointegrated dental implants using finite element analysis-a two-dimensional comparative study examining the effects of implant diameter, implant shape, and load direction. J Oral Implantol 1998;24:80-8.   DOI   ScienceOn
15 Matsushita Y, Kitoh M, Mizuta K, Ikeda H, Suetsugu T. Two-dimensional FEM analysis of hydroxyapatite implants: diameter effects on stress distribution. J Oral Implantol 1990;16:6-11.
16 Chun HJ, Cheong SY, Han JH, Heo SJ, Chung JP, Rhyu IC, Choi YC, Baik HK, Ku Y, Kim MH. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. J Oral Rehabil 2002;29:565-74.   DOI   ScienceOn
17 Hansson S, Werke M. The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study. J Biomech 2003;36:1247-58.   DOI   ScienceOn
18 Clelland NL, Gilat A. The effect of abutment angulation on stress transfer for an implant. J Prosthodont 1992;1:24-8.   DOI   ScienceOn
19 Gotfredsen K, Berglundh T, Lindhe J. Bone reactions adjacent to titanium implants with different surface characteristics subjected to static load. A study in the dog (II). Clin Oral Implants Res 2001;12:196-201.   DOI   ScienceOn
20 O'Brien GR, Gonshor A, Balfour A. A 6-year prospective study of 620 stress-diversion surface (SDS) dental implants. J Oral Implantol 2004;30:350-7.   DOI   ScienceOn
21 Adell R, Lekholm U, Rockler B, Bra􀆆nemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 1981;10:387-416.   DOI
22 Lang NP, Bragger U, Walther D, Beamer B, Kornman KS. Ligature-induced peri-implant infection in cynomolgus monkeys. I. Clinical and radiographic findings. Clin Oral Implants Res 1993;4:2-11.   DOI   ScienceOn
23 Davies JE. Mechanisms of endosseous integration. Int J Prosthodont 1998;11:391-401.
24 Wiskott HW, Belser UC. Lack of integration of smooth titanium surfaces: a working hypothesis based on strains generated in the surrounding bone. Clin Oral Implants Res 1999;10:429-44.   DOI   ScienceOn
25 Levine RA, Clem DS 3rd, Wilson TG Jr, Higginbottom F, Solnit G. Multicenter retrospective analysis of the ITI implant system used for single-tooth replacements: results of loading for 2 or more years. Int J Oral Maxillofac Implants 1999;14:516-20.
26 Maeda Y, Satoh T, Sogo M. In vitro differences of stress concentrations for internal and external hex implant-abutment connections: a short communication. J Oral Rehabil 2006;33:75-8.   DOI   ScienceOn
27 Pieri F, Aldini NN, Marchetti C, Corinaldesi G. Influence of implant-abutment interface design on bone and soft tissue levels around immediately placed and restored single-tooth implants: a randomized controlled clinical trial. Int J Oral Maxillofac Implants 2011;26:169-78.
28 Merz BR, Hunenbart S, Belser UC. Mechanics of the implantabutment connection: an 8-degree taper compared to a butt joint connection. Int J Oral Maxillofac Implants 2000;15:519-26.
29 Zarb GA, Schmitt A. The longitudinal clinical effectiveness of osseointegrated dental implants: the Toronto study. Part III: Problems and complications encountered. J Prosthet Dent 1990;64:185-94.   DOI   ScienceOn
30 Ash MM Jr. Wheeler's dental anatomy, physiology and occlusion. 7th ed; WB Saunders Co.; 1993. p. 218-31.
31 Henry PJ, Laney WR, Jemt T, Harris D, Krogh PH, Polizzi G, Zarb GA, Herrmann I. Osseointegrated implants for singletooth replacement: a prospective 5-year multicenter study. Int J Oral Maxillofac Implants 1996;11:450-5.
32 Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Biomechanical aspects of marginal bone resorption around osseointegrated implants: considerations based on a three-dimensional finite element analysis. Clin Oral Implants Res 2004;15:401-12.   DOI   ScienceOn
33 Quirynen M, Naert I, van Steenberghe D. Fixture design and overload influence marginal bone loss and fixture success in the Branemark system. Clin Oral Implants Res 1992;3:104-11.   DOI   ScienceOn
34 Ericsson I, Persson LG, Berglundh T, Marinello CP, Lindhe J, Klinge B. Different types of inflammatory reactions in peri-implant soft tissues. J Clin Periodontol 1995;22:255-61.
35 Berglundh T, Lindhe J. Dimension of the periimplant mucosa. Biological width revisited. J Clin Periodontol 1996;23:971-3.   DOI   ScienceOn
36 Hermann JS, Schoolfield JD, Schenk RK, Buser D, Cochran DL. Influence of the size of the microgap on crestal bone changes around titanium implants. A histometric evaluation of unloaded non-submerged implants in the canine mandible. J Periodontol 2001;72:1372-83.   DOI
37 Schwartz-Arad D, Herzberg R, Levin L. Evaluation of long-term implant success. J Periodontol 2005;76:1623-8.   DOI   ScienceOn
38 Goodacre CJ, Kan JY, Rungcharassaeng K. Clinical complications of osseointegrated implants. J Prosthet Dent 1999;81:537-   DOI   ScienceOn
39 Albrektsson T, Zarb G, Worthington P, Eriksson AR. The longterm efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants 1986;1:11-25.
40 Smith DE, Zarb GA. Criteria for success of osseointegrated endosseous implants. J Prosthet Dent 1989;62:567-72.   DOI   ScienceOn
41 Barbier L, Schepers E. Adaptive bone remodeling around oral implants under axial and nonaxial loading conditions in the dog mandible. Int J Oral Maxillofac Implants 1997;12:215-23.
42 Wyatt CC, Zarb GA. Bone level changes proximal to oral implants supporting fixed partial prostheses. Clin Oral Implants Res 2002;13:162-8.   DOI   ScienceOn
43 Misch CE, Suzuki JB, Misch-Dietsh FM, Bidez MW. A positive correlation between occlusal trauma and peri-implant bone loss: literature support. Implant Dent 2005;14:108-16.   DOI   ScienceOn
44 Isidor F. Influence of forces on peri-implant bone. Clin Oral Implants Res 2006;17:8-18.
45 Saadoun AP, Le Gall M, Kricheck M. Microbial infections and occlusal overload: causes of failure in osseointegrated implants. Pract Periodontics Aesthet Dent 1993;5:11-20.
46 Lindhe J, Berglundh T, Ericsson I, Liljenberg B, Marinello C. Experimental breakdown of peri-implant and periodontal tissues. A study in the beagle dog. Clin Oral Implants Res 1992;3:9-16.   DOI   ScienceOn