• Title/Summary/Keyword: Three dimensional data

Search Result 3,135, Processing Time 0.035 seconds

Analysis of Facial Asymmetry in Deformational Plagiocephaly Using Three-Dimensional Computed Tomographic Review

  • Moon, Il Yung;Lim, So Young;Oh, Kap Sung
    • Archives of Craniofacial Surgery
    • /
    • v.15 no.3
    • /
    • pp.109-116
    • /
    • 2014
  • Background: Infants with deformational plagiocephaly (DP) usually present with cranial vault deformities as well as facial asymmetry. The purpose of this study was to use three-dimensional anthropometric data to evaluate the influence of cranial deformities on facial asymmetry. Methods: We analyzed three-dimensional computed tomography data for infants with DP (n=48) and without DP (n=30, control). Using 16 landmarks and 3 reference planes, 22 distance parameters and 2 angular parameters were compared. This cephalometric assessment focused on asymmetry of the orbits, nose, ears, maxilla, and mandible. We then assessed the correlation between 23 of the measurements and cranial vault asymmetry (CVA) for statistical significance using relative differences and correlation analysis. Results: With the exception of few orbital asymmetry variables, most measurements indicated that the facial asymmetry was greater in infants with DP. Mandibular and nasal asymmetry was correlated highly with severity of CVA. Shortening of the ipsilateral mandibular body was particularly significant. There was no significant deformity in the maxilla or ear. Conclusion: This study demonstrated that the cranial vault deformity in DP is associated with facial asymmetry. Compared with the control group, the infants with DP were found to have prominent asymmetry of the nose and mandible.

A development of the 3-dimensional stationary drift-diffusion equation solver (3차원 정상상태의 드리프트-확산 방정식의 해석 프로그램 개발)

  • 윤현민;김태한;김대영;김철성
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.8
    • /
    • pp.41-51
    • /
    • 1997
  • The device simulator (BANDIS) which can analyze efficiently the electrical characteristics of the semiconductor devices under the three dimensional stationary conditions on the IBM PC was developed. Poisson, electon and hole continuity equations are discretized y te galerkin method using a tetrahedron as af finite element. The frontal solver which has exquisite data structures and advanced input/output functions is dused for the matrix solver which needs the highest cost in the three dimensional device simulation. The discretization method of the continuity equations used in BANDIS are compared with that of the scharfetter-gummel method used in the commercial three-dimensional device. To verify an accuracy and the efficiency of the discretization method, the simulation results of the PN junction diode and the BJT from BANDIS are compared with those of the commercial three-dimensiional device simulator such as DAVINCI. The maximum relative error within 2% and the average number of iterations needed for the convergence is decreased by more than 20%. The total simulation time of the BJT with 25542 nodes is decreased to about 60% compared with that of DAVINCI.

  • PDF

investigation of process parameter influence on 3D surface coloring (3 차원 표면의 컬러 인쇄를 위한 공정 변수 영향 분석에 관한 연구)

  • 송민섭;이상호;김효찬;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1390-1393
    • /
    • 2004
  • In the present industry, three-dimensional colored shape has required for realistic prototype in rapid manufacturing. Z-corporation developed 3D printer which can color three-dimensional prototype but this process can't be adopted to other rapid prototype products and spend much time and cost coloring 3D shape. In this study a new coloring process on three-dimensional surface is proposed for realistic prototype. Three-dimensional surface coloring apparatus is composed of HP ink jet head and X-Y plotter. Distance and angle between ink jet nozzle and 3D surface are set as process parameter. Based on the experiment of process parameters, it is shown that distance and angle affected on printed image on 3D surface. Circle and line shape are chosen as standard image shape because the shape has widely used as standard in 2D printing. Consequently, the distorted image on 3D surface is corrected by transformed input image data.

  • PDF

Flow Analysis of Centrifugal Compressor Using Quasi-Three-Dimensional Analysis (원심압축기의 유동해석을 위한 준삼차원 해석기법)

  • Ahn, S. J.;Oh, H. W.;Kim, K. Y.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.106-112
    • /
    • 2001
  • This paper presents analysis of the flows through three different types of radial compressor impeller by using quasi-three-dimensional analysis method. The method obtains two-dimensional solution for velocity distribution on meridional plane, and then calculates approximately the static pressure distributions on blade surfaces. Finite difference method is used for the solutions of governing equations. The compressors have low level compression-ratio and 12 straight radial blades with no sweepback. The results are compared with experimental data and the results of inviscid analysis with finite element method. It can be concluded that the agreement is good for the cases where viscous effects are not dominant.

  • PDF

Performance Prediction of Centrifugal Compressor Impellers using Quasi-Three-Dimensional Analysis (준삼차원 방법에 의한 원심 압축기의 성능예측)

  • Ahn, S.J.;Oh, H.W.;Kim, K.Y.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.628-633
    • /
    • 2001
  • This paper presents analysis of the flows through three different types of radial compressor by using quasi-three-dimensional analysis method. The method obtains two-dimensional solution for velocity distribution on meridional plane, and then calculates approximately the static pressure distributions on blade surfaces. Finite difference method is used for the solutions of governing equations. The compressors have low level compression-ratio and 12 straight radial blades with no sweepback. The results are compared with experimental data and the results of inviscid analysis with finite element method. It can be concluded that the agreement is good for the cases where viscous effects are not dominant.

  • PDF

Learning-possibility for neuron model in Medical Superior Temporal area

  • Sekiya, Yasuhiro;Zhu, Hanxi;Aoyama, Tomoo;Tang, Zheng
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.516-516
    • /
    • 2000
  • We propose a neuron model that is possible to learn three-dimensional movement. The neuron model by imitating structure of a neuron, has the system resemble a neuron. We considered a neuron system based on the arguments, and wished to examine whether the system had reasonable function. Koch, Poggio and Torre believed that inhibition signal would shunt excitation signal on the dendrites. They believed that excitation signal operated input-signals and inhibition did as delayed ones. Thus, they were sure that function for directional selectivity was arisen by the shunting. Koch's concept is so important; therefore, we construct the neuron system with their concept. The neuron system makes the shunting function; thus, the model may have a function for directional selectivity. We initialized the connections and the dendrites by random data, and trained them by the back-propagation algorithm for three-dimensional movement. We made sure the defection of three-dimensional movement in the system.

  • PDF

Computational Analysis of the Three-Dimensional Flow Fields of Sirocco Fan

  • Hah, Jae-Hong;Moon, Young-J.;Park, Jin-Moo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.2
    • /
    • pp.44-50
    • /
    • 2001
  • The Sirocco fan performance and its three-dimensional flow characteristics are numerically prediction by STAR-CD. Turbulent flow computations are performed using approximately 500,000 mesh points, and the performance results of tow computational methods, transient and quasi-static flow analyses are compared with experimental data. In the present study, our attention is focused on the three-dimensional flow characteristics of the Sirocco fan blades and the secondary flow structure in the scroll. For a design optimization study, the scroll shape is titled by $10^\circ$ to modify the secondary flow structure, which yields some improvement of the fan performance.

  • PDF

The Discontinuities Extraction and Analysis of Rock Slope by 3D Image (3차원영상에 의한 암반사면의 불연속면 추출 및 분석)

  • 강준묵;김위현;박준규
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.163-167
    • /
    • 2003
  • As digital photogrammetry can acquire much three-dimensional data quickly and exactly in equal accuracy, and it has advantage that can use this in modelling, it's practical use possibility is increased in various field by collection method of data for GIS. In this study, it was intended to create 3D image that has coordinate system, and use in acquisition of position information for object. And, it was applied to discontinuities extraction and measurement of rock slope for practical use of three-dimensional image and examination of measurement accuracy. Through this, it is inspected the possibility of three-dimensional image creation and the acquisition of space information.

  • PDF

A Numerical Analysis of Three-Dimensional Flow Within a Transonic Fan (천음속 팬의 3차원 유동에 관한 수치해석)

  • Chung, Juhyun;Ko, Sungho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.82-91
    • /
    • 1999
  • A numerical analysis based on the three-dimensional Reynolds-averaged Navier-Stokes equation has been conducted to investigate the flow within a NASA rotor 67 transonic fan. General coordinate transformations are used to represent the complex blade geometry and an H-type grid is used. The governing equations are solved using implicit LU-SGS scheme for the time-marching integration and a standard ${\kappa}-{\varepsilon}$ model is used with wall functions for the turbulence modeling. The computations are compared with the experimental data and a detailed study of the flow structures near peak efficiency and near stall is presented. The calculated overall aerodynamic efficiency and three-dimensional shock system agree well with the laser anemometer data.

Three-dimensional Information and Refractive Index Measurement Using a Dual-wavelength Digital Holographic

  • Shin, Sang-Hoon;Yu, Young-Hun
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.173-177
    • /
    • 2009
  • Digital holographic microscopy allows optical path difference measurement. Optical path difference depends on the both refractive index and morphology of sample. We developed a dual-wavelength in-line digital holographic microscope that can measure simultaneously the refractive index and morphology of a sample, providing highly precise three-dimensional information. Here we propose theoretical and experimental methods for dual-wavelength in-line digital holographic microscopy. The measured data were reasonable, although there was data error. By improving the experimental method, we could measure the refractive index more precisely and obtain more accurate three-dimensional information on samples.