• Title/Summary/Keyword: Three Phase Load Flow

Search Result 38, Processing Time 0.021 seconds

A Study on the Unbalanced Current Distribution of HTS Power Cable (초전도 전력케이블의 전류 불평형에 관한 연구)

  • Kim, Jae-Ho;Park, Chung-Hwa
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.43-47
    • /
    • 2012
  • The unbalance currents flow the High Temperature Superconducting (HTS) power cable caused by asymmetrical fault, harmonic distortion and unbalanced load. That problem causes additional loss and leakage field in the HTS power cable, and deteriorates the electric power quality and stability. In addition, large amounts of unbalanced current can cause negative sequence and ground relays to operate. This paper presents an analysis unbalanced three-phase current distribution in HTS power cable caused by unbalanced load condition and grounding methods using PSCAD/EMTDC. The results obtained through the analysis would provide important data for the design of HTS power cables and valid information for their installation in power system.

Parallel Operation of Three-Phase Four wire UPS using Droop Control (Droop Control을 이용한 3상 4선식 UPS의 병렬운전)

  • Kim, Hyunseob;Han, Jungho;Song, Joong-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.4
    • /
    • pp.88-95
    • /
    • 2013
  • A new droop control method which can be applied to 3-phase 4-wire uninterruptible power supply is proposed in this paper. The droop control method for parallel operation is very attractive one as UPS parallel operation can be carried out without any data communication devices provided among UPS systems connected, but it reportedly shows a PnP(plug-and-play) problem. A basic reason why a circulating current could flow among parallel-connected UPS systems is clearly investigated as well when droop-controlled-ups systems are operated in the manner of PnP. The proposed algorithm is deduced from the investigated result and is basically structured to keep a balanced frequency and balanced voltage profile against power variation. This paper shows that balanced parallel operation of droop control method can be obtained under unbalanced load as well as balanced load conditions when PnP operation is needed and load change occurs.

Effects of a Static Synchronous Series Compensator (SSSC) Based on a Soft Switching 48-Pulse PWM Inverter on the Power Demand from the Grid

  • Ustun, Taha Selim;Mekhilef, Saad
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.85-90
    • /
    • 2010
  • In this paper the effects of a Static Synchronous Series Compensator, which is constructed with a 48-pulse inverter, on the power demand from the grid are studied. Extensive simulation studies were carried out in the MATLAB simulation environment to observe the compensation achieved by the SSSC and its effects on the line voltage, line current, phase angle and real/reactive power. The designed device is simulated in a power system which is comprised of a three phase power source, a transmission line, line inductance and load. The system parameters such as line voltage, line current, reactive power Q and real power P transmissions are observed both when the SSSC is connected to and disconnected from the power system. The motivation for modeling a SSSC from a multi-pulse inverter is to enhance the voltage waveform of the device and this is observed in the total harmonic distortion (THD) analysis performed at the end of the paper. According to the results, the power flow and phase angle can be controlled successfully by the new device through voltage injection. Finally a THD analysis is performed to see the harmonics content. The effect on the quality of the line voltage and current is acceptable according to international standards.

Across-wind excitation mechanism for interference of twin tall buildings in tandem arrangement

  • Zu, G.B.;Lam, K.M.
    • Wind and Structures
    • /
    • v.26 no.6
    • /
    • pp.397-413
    • /
    • 2018
  • Excitation mechanism of interference effect between two tall buildings is investigated with wind tunnel experiments. Synchronized building surface pressure and flow field measurements by particle image velocimetry (PIV) are conducted to explore the relationship between the disturbed wind flow field and the consequent wind load modification for twin buildings in tandem. This reveals evident excitation mechanisms for the fluctuating across-wind loads on the buildings. For small distance (X/D < 3) between two buildings, the disturbed flow pattern of impaired vortex shedding is observed and the fluctuating across-wind load on the downstream building decreases. For larger distance ($X/D{\geq}3$), strong correlation between the across-wind load of the downstream building and the oscillation of the wake of the upstream building is found. By further analysis with conditional sampling and phase-averaged techniques, the coherent flow structures in the building gap are clearly observed and the wake oscillation of the upstream building is confirmed to be the reason of the magnified across-wind force on the downstream building. For efficient PIV measurement, the experiments use a square-section high-rise building model with geometry scale smaller than the usual value. Interference factors for all three components of wind loads on the building models being surrounded by another identical building with various configurations are measured and compared with those from previous studies made at large geometry scale. The results support that for interference effect between buildings with sharp corners, the length scale effect plays a minor role provided that the minimum Reynolds number requirement is met.

Cryogenic cooling system for a 154 kV/ 2 kA superconducting fault current limiter

  • In, Sehwan;Hong, Yong-Ju;Yeom, Hankil;Ko, Junseok;Kim, Hyobong;Park, Seong-Je;Han, Young-Hee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.2
    • /
    • pp.34-39
    • /
    • 2018
  • A cryogenic cooling system is designed for a 154 kV/ 2 kA three-phase hybrid type superconducting fault current limiter (SFCL). The superconducting modules of the SFCL have the operating condition of 71 K at 500 kPa. The total heat load of the SFCL including the cooling system is estimated at 9.6 kW. The cooling system of the closed loop is configured to meet the operating condition, depending on cooling methods of forced flow cooling and re-liquefaction cooling. The cooling system is composed of three cryostats with superconducting modules, cryocoolers, liquid nitrogen circulation pumps, a subcooler and a pressure builder. The basic cooling concept is to circulate liquid nitrogen between three SFCL cryostats and the cryocooler, while maintaining the operating pressure. The design criterion for the cooling system is based on the operation results of the cooling system for a 154 kV/2 kA single-phase hybrid SFCL. The specifications of system components including the piping system are determined according to the design criterion.

Failure analysis of tubes under multiaxial proportional and non-proportional loading paths

  • Mohammad Hossein Iji;Ali Nayebi
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.289-296
    • /
    • 2023
  • The failure of a thin-walled tube was studied in this paper based on three failure models. Both proportional and non-proportional loading paths were applied. Proportional loading consisted of combined tension-torsion. Cyclic non-proportional loading was also applied. It was a circular out-of-phase axial-shear stress loading path. The third loading path was a combination of a constant internal pressure and a bending moment. The failure models under study were equivalent plastic strain, modified Mohr-Coulomb (Bai-Wierzbicki) and Tearing parameter models. The elasto-plastic analysis was conducted using J2 criterion and nonlinear kinematic hardening. The return mapping algorithm was employed to numerically solve the plastic flow relations. The effects of the hydrostatic stress on the plastic flow and the stress triaxiality parameter on the failure were discussed. Each failure model under study was utilized to predict failure. The failure loads obtained from each model were compared with each other. The equivalent plastic strain model was independent from the stress triaxiality parameter, and it predicted the highest failure load in the bending problem. The modified Mohr-Coulomb failure model predicted the lowest failure load for the range of the stress triaxiality parameter and Lode's angle.

Multi-objective Unbalanced Distribution Network Reconfiguration through Hybrid Heuristic Algorithm

  • Mahendran, G.;Sathiskumar, M.;Thiruvenkadam, S.;Lakshminarasimman, L.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.215-222
    • /
    • 2013
  • Electrical power distribution systems are critical links between the utility and customer. In general, power distribution systems have unbalanced feeders due to the unbalanced loading. The devices that dependent on balanced three phase supply are affected by the unbalanced feeders. This necessitates the balancing of feeders. The main objective of reconfiguration is to balance the loads among the phases subject to constraints such as load flow equations, capacity and voltage constraints and to reduce the real power loss, while subject to a radial network structure in which all loads must be energized. Therefore, the distribution system reconfiguration problem has been viewed as multi-objective problem. In this paper, the hybrid heuristic algorithm has been used for reconfiguration, which is the combination of fuzzy and greedy algorithms. The purpose of the introduction of greedy is to refrain the searching for the period of phase balancing. The incorporation of fuzzy helps to take up more objectives amid phase balancing in the searching. The effectiveness of the proposed method is demonstrated through modified IEEE 33 bus and modified IEEE 125 bus radial distribution system.

Three-Phase 4-Wire Isolated Wind Energy Conversion System Employing VSC with a T-Connected Transformer for Neutral Current Compensation

  • Kasal, Gaurav Kumar;Singh, Bhim
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.211-218
    • /
    • 2009
  • This paper presents a voltage and frequency controller (VFC) for a 4-wire stand-alone wind energy conversion system (WECS) employing an asynchronous generator. The proposed VF con-troller consists of a three leg IGBT (Insulated Gate Bipolar Junction Transistor) based voltage source converter and a battery at its DC bus. The neutral terminal for the consumer loads is created using a T-connected transformer, which consists of only two single phase transformers. The control algorithm of the VF controller is developed for the bidirectional flow capability of the active power and reactive power control by which it controls the WECS voltage and frequency under different dynamic conditions, such as varying consumer loads and varying wind speeds. The WECS is modeled and simulated in MATLAB using Simulink and PSB toolboxes. Extensive results are presented to demonstrate the capability of the VF controller as a harmonic eliminator, a load balancer, a neutral current compensator as well as a voltage and frequency controller.

The Experimental Study on the Performance of Two-Phase Loop Thermosyphone System for Electronic Equipment Cooling (전자장비 냉각을 위한 2상 순환형 써모사이폰 시스템의 성능에 대한 실험적 연구)

  • Kang, In-Seak;Choi, Dong-Kyu;Kim, Taig-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.415-424
    • /
    • 2004
  • Cooling the electronic equipment is one of the major focal points of the design process and the key to successful product launch. The two-phase loop thermosyphone which is a good candidate among many available options was investigated fur cooling of the high power amplifiers. The system is composed of evaporator which contains 6 parallel cold plates, fan cooled condenser, gas-liquid separator, and interconnecting tubes. Experiments were performed for several refrigerant charging values, hs and as a experiment result, the optimum charging value fur this system was proposed. In order to optimize the system design, the operating cycle pressure and inlet/outlet temperatures of evaporator and condenser are measured and analyzed. The effect of the three parameters such as flow rate and temperature of condenser cooling air, and thermal load on the evaporator are investigated. The lower the operating pressure and the cycle temperatures are also better to prevent the leakage of the system. The system invesigated in this paper can be directly used for cooling of a real unmanned wireless communication station.

Analysis of Abnormal Signals for Induction Motor according to Operating Status of Fire Pumps (소방펌프의 운전상태에 따른 유도전동기의 이상 신호 분석)

  • Ku, Bonhyu;Kim, Doo-Hyun;Kim, Sung-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.20-27
    • /
    • 2022
  • This article aims to develop an algorithm that detects fire pump defects by analyzing the current signals of an induction motor, which are triggered by changes in the flow rate and pressure of multistage volute pumps that are used for fire services. The operational status of the pumps was categorized into three: first, normal operation; second, a defect that is caused by a change in the current value; and third, a defect occasioned by a change in current, pressure, and flow rate. When a fire pump was in normal operation, the motor's operating current was measured between 5.06 A and 6.9 A, the flow rate was estimated at 0-0.27 m3/min, and the pressure ranged from 0 to 0.47 MPa. In the event that a defect was caused by an abnormal current value in the motor, it was attributed to the pump's adherence. Furthermore, if there was no source of water, the defect was considered to have been induced by phase-loss operation, no-load operation, or run-stop operation, with the current value of each scenario being measured at > 52.8 A, < 4.13 A, > 45.15 A, and < 3.8 A, respectively, placing its overall range between 0 and 50 A. The sources of defects were detected based on an analysis of the flow rate, pressure, and current, which represent the following causes: air inflow into the casing, inadequate suction of water, and reverse-phase operation, respectively. Each cause entailed the following values: when air seeped into the casing, the pressure was measured at 0.24 MPa irrespective of changes in the flow rate; when there was inadequate suction of water, the pressure was recorded between 0 and 0.05 MPa despite changes in the flow rate; and when the power line's reverse-phase loss was the cause of the defect, the pressure was measured at 0.33 MPa for a flow rate of 0 L/min, and a higher flow rate decreased the pressure to nearly 0 MPa. The results of this study will enable engineers to develop a pump defect detection algorithm that is based on an analysis of current, and this algorithm will facilitate the execution of a program that will control a fire pump defect detection system.