• Title/Summary/Keyword: Three Dimensional Positioning

Search Result 168, Processing Time 0.04 seconds

A Study of Static Bias Correction for Temperature of Aircraft based Observations in the Korean Integrated Model (한국형모델의 항공기 관측 온도의 정적 편차 보정 연구)

  • Choi, Dayoung;Ha, Ji-Hyun;Hwang, Yoon-Jeong;Kang, Jeon-ho;Lee, Yong Hee
    • Atmosphere
    • /
    • v.30 no.4
    • /
    • pp.319-333
    • /
    • 2020
  • Aircraft observations constitute one of the major sources of temperature observations which provide three-dimensional information. But it is well known that the aircraft temperature data have warm bias against sonde observation data, and therefore, the correction of aircraft temperature bias is important to improve the model performance. In this study, the algorithm of the bias correction modified from operational KMA (Korea Meteorological Administration) global model is adopted in the preprocessing of aircraft observations, and the effect of the bias correction of aircraft temperature is investigated by conducting the two experiments. The assimilation with the bias correction showed better consistency in the analysis-forecast cycle in terms of the differences between observations (radiosonde and GPSRO (Global Positioning System Radio Occultation)) and 6h forecast. This resulted in an improved forecasting skill level of the mid-level temperature and geopotential height in terms of the root-mean-square error. It was noted that the benefits of the correction of aircraft temperature bias was the upper-level temperature in the midlatitudes, and this affected various parameters (winds, geopotential height) via the model dynamics.

Assessing Safety Requirements Based on KANO Model (KANO 모형 기반 안전요구사항 평가)

  • Sejung Lee;Seongrok Chang;Yongyoon Suh
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.3
    • /
    • pp.9-15
    • /
    • 2023
  • As the first step of risk management, risk identification is inevitable to understand the degree of work safety. However, the safety requirements can be divided in necessary factors and additional factors. Thus, we propose a safety requirements assessment model using Kano model derived from Herzberg's two-factor theory, classifying safety requirements into ideal elements and must-be elements. The Kano model is usually applied to evaluate customer satisfaction divided into three major requirements in the fields of product development and marketing: attractive, must-be, and one-dimensional requirements. Among them, attractive requirement and must-be requirement are matched with ideal element and must-be element for safety requirement classification, respectively. The ideal element is defined as preventive safety elements to make systems more safe and the must-be element is referred to as fatal elements to be essentially eliminated in systems. Also, coefficients of safety measurement and safety prevention are developed to classify different class of safety requirements. The positioning map is finally visualized in terms of both coefficients to compare the different features. Consequently, the proposed model enables safety managers to make a decision between safety measurement and prevention.

Analysis of Drone Surveying Using a Low-Cost PPK Kit (PPK Kit를 활용한 드론 측량 분석)

  • Park, Junho;Kim, Taerim
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.4
    • /
    • pp.41-52
    • /
    • 2021
  • With the popularization of drones and the ease of use of the Global Navigation Satellite System (GNSS), drone photogrammetry for terrain information has been widely used. Drone photogrammetry enables the realization of high-accuracy three-dimensional topography for the entire area with less effort and time compared to the past direct survey using GNSS or total station. From 3-D topographic data, various topographical analysis is possible. To improve the accuracy of drone photogrammetry, direct GCP surveying in the field is essential, and the numbers and reasonable positioning of GCPs are very important. In the case of beaches or tidal flats on the west coast of Korea, the numbers and location of GCPs are important factors in efficient drone photogrammetry because of the size of the area, difficulties of movement, and the risk from tides. If the RTK (Real-time kinematic) or PPK (Post-processed kinematic) method is used, the increased accuracy of the drone's location enables high-accuracy photogrammetry with a small number of GCPs. This study presents an efficient drone photogrammetry method in terms of time and economy by comparing and analyzing the results of drone photogrammetry using Non-PPK with low-cost PPK-Kit, based on the tests of various numbers and locations of GCPs in the university field including various slopes and structures like coastal terrain.

A Novel RFID Dynamic Testing Method Based on Optical Measurement

  • Zhenlu Liu;Xiaolei Yu;Lin Li;Weichun Zhang;Xiao Zhuang;Zhimin Zhao
    • Current Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.127-137
    • /
    • 2024
  • The distribution of tags is an important factor that affects the performance of radio-frequency identification (RFID). To study RFID performance, it is necessary to obtain RFID tags' coordinates. However, the positioning method of RFID technology has large errors, and is easily affected by the environment. Therefore, a new method using optical measurement is proposed to achieve RFID performance analysis. First, due to the possibility of blurring during image acquisition, the paper derives a new image prior to removing blurring. A nonlocal means-based method for image deconvolution is proposed. Experimental results show that the PSNR and SSIM indicators of our algorithm are better than those of a learning deep convolutional neural network and fast total variation. Second, an RFID dynamic testing system based on photoelectric sensing technology is designed. The reading distance of RFID and the three-dimensional coordinates of the tags are obtained. Finally, deep learning is used to model the RFID reading distance and tag distribution. The error is 3.02%, which is better than other algorithms such as a particle-swarm optimization back-propagation neural network, an extreme learning machine, and a deep neural network. The paper proposes the use of optical methods to measure and collect RFID data, and to analyze and predict RFID performance. This provides a new method for testing RFID performance.

A Study on the Design and Implementation of a Position Tracking System using Acceleration-Gyro Sensor Fusion

  • Jin-Gu, Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.49-54
    • /
    • 2023
  • The Global Positioning System (GPS) was developed for military purposes and developed as it is today by opening civilian signals (GPS L1 frequency C/A signals). The current satellite orbits the earth about twice a day to measure the position, and receives more than 3 satellite signals (initially, 4 to calculate even the time error). The three-dimensional position of the ground receiver is determined using the data from the radio wave departure time to the radio wave Time of Arrival(TOA) of the received satellite signal through trilateration. In the case of navigation using GPS in recent years, a location error of 5 to 10 m usually occurs, and quite a lot of areas, such as apartments, indoors, tunnels, factory areas, and mountainous areas, exist as blind spots or neutralized areas outside the error range of GPS. Therefore, in order to acquire one's own location information in an area where GPS satellite signal reception is impossible, another method should be proposed. In this study, IMU(Inertial Measurement Unit) combined with an acceleration and gyro sensor and a geomagnetic sensor were used to design a system to enable location recognition even in terrain where GPS signal reception is impossible. A method to track the current position by calculating the instantaneous velocity value using a 9-DOF IMU and a geomagnetic sensor was studied, and its feasibility was verified through production and experimentation.

Distinction and Tracking of Multiple Pingers Using a Single Frequency (단일 주파수에 의한 복수의 초음파 핑거의 식별 및 추적)

  • 신현옥
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.4
    • /
    • pp.360-364
    • /
    • 1990
  • To testy time division scheme, we performed some experiments in a circular water tank(13m in diameter and 1m deep). A result of that is shown in figure 4. The 2-dimensional position of the pinger was calculated by the method of hyperbolic line of position calculation. The resolution of the time difference on the base line is 2.5cm. In experiments, the multiple pingers of a single frequency were distinguished and tracked successfully. When the experiment is carried out in the water tank, some multi-path pulses always occur. To delete it, several 10 ms of time delay is inserted onto the program after a group of the normal signals are received. Some normal pulses are not received by the time delay, however there is no problem, practically, for the distinction and the tracking of the pulse. In 2-dimensional positioning, the pinger position can be calculated with three hydrophones. However, if four hydrophones are available, the positioning accuracy will be higher than three hydrophones only by some techniques. Another good feature of the use of four hydrophones is that the positioning of the pinger is capable if a hydrophone fails in receiving them. We also tested this distinguishing method in the field using another type pingers(APPENDIXA).

  • PDF

Evaluation of interdental distance of natural teeth with cone-beam computerized tomography (콘빔형 전산화단층영상을 이용한 자연치 치간거리의 평가)

  • Oh, Sang-Chun;Kong, Hyun-Jun;Lee, Wan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.4
    • /
    • pp.278-283
    • /
    • 2017
  • Purpose: The aim of this study was to evaluate the interdental distances of anterior, premolar, and molar teeth at the cementoenamel junction (CEJ) and 2 mm below the CEJ in healthy natural dentition with cone-beam computerized tomography (cone-beam CT) in order to provide valuable data for ideal implant positioning relative to mesiodistal bone dimensions. Materials and Methods: Two hundred patients who visited Dental Hospital, Wonkwang University, who had natural dentition with healthy interdental papillae, and who underwent cone-beam CT were selected. The cone-beam CT images were converted to digital imaging and communication in medicine (DICOM) files and reconstructed in three-dimensional images. To standardize the cone-beam CT images, head reorientation was performed. All of the measurements were determined on the reconstructed panoramic images by three professionally trained dentists. Results: At the CEJ, the mean maxillary interdental distances were 1.84 mm (anterior teeth), 2.07 mm (premolar), and 2.08 mm (molar), and the mean mandibular interproximal distances were 1.55 mm (anterior teeth), 2.20 mm (premolar), and 2.36 mm (molar). At 2mm below the CEJ, the mean maxillary interdental distances were 2.19 mm (anterior teeth), 2.51 mm (premolar), and 2.60 mm (molar), and the mean mandibular interproximal distances were 1.86 mm (anterior teeth), 2.53 mm (premolar), and 3.01 mm (molar). Conclusion: The interdental distances in the natural dentition were larger at the posterior teeth than at the anterior teeth and also at 2 mm below the CEJ level compared with at the CEJ level. The distances between mandibular incisors were the narrowest and the distances between mandibular molars were the widest in the entire dentition.

A development of the virtual auditory display system that allows listeners to move in a 3D space (청취자가 이동이 가능한 청각 디스플레이 시스템 개발)

  • Kang, Dae-Gee;Lee, Chai-Bong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • In this study, we constructed a virtual auditory display(VAD) that enables listener to move in a room freely. The VAD system was installed in a soundproof room($4.7m(W){\times}2.8m(D){\times}3.0m(H)$). The system consisted of a personal computer, a sound presentation device, and a three-dimensional ultrasound sensor system. This system acquires listener's location and position from a three-dimension ultrasonic sensor system covering the entire room. Localization was realized by convolving the sound source with head related transfer functions(HRTFs) on personal computer(PC). The calculated result is generated through a LADOMi(Localization Auditory Display with Opened ear-canal for Mixed Reality). The HRTFs used in the experiment were measured for each listener with loudspeakers constantly 1.5m away from the center of the listener' s head in an anechoic room. To evaluate the system performance, we experimented a search task of a sound source position in the condition that the listener is able to move all around the room freely. As a result, the positioning error of presented sound source was within 30cm in average for all listeners.

Photogrammetric Georeferencing Using LIDAR Linear and Areal Features

  • HABIB Ayman;GHANMA Mwafag;MITISHITA Edson
    • Korean Journal of Geomatics
    • /
    • v.5 no.1
    • /
    • pp.7-19
    • /
    • 2005
  • Photogrammetric mapping procedures have gone through major developments due to significant improvements in its underlying technologies. The availability of GPS/INS systems greatly assist in direct geo-referencing of the acquired imagery. Still, photogrammetric datasets taken without the aid of positioning and navigation systems need control information for the purpose of surface reconstruction. Point features were, and still are, the primary source of control for the photogrammetric triangulation although other higher-order features are available and can be used. LIDAR systems supply dense geometric surface information in the form of three dimensional coordinates with respect to certain reference system. Considering the accuracy improvement of LIDAR systems in the recent years, LIDAR data is considered a viable supply of photogrammetric control. To exploit LIDAR data, new challenges are poised concerning the representation and reference system by which both the photogrammetric and LIDAR datasets are described. In this paper, registration methodologies will be devised for the purpose of integrating the LIDAR data into the photogrammetric triangulation. Such registration methodologies have to deal with three issues: registration primitives, transformation parameters, and similarity measures. Two methodologies will be introduced that utilize straight-line and areal features derived from both datasets as the registration primitives. The first methodology directly incorporates the LIDAR lines as control information in the photogrammetric triangulation, while in the second methodology, LIDAR patches are used to produce and align the photogrammetric model. Also, camera self-calibration experiments were conducted on simulated and real data to test the feasibility of using LIDAR patches for this purpose.

  • PDF

Accuracy Investigation of RPC-based Block Adjustment Using High Resolution Satellite Images GeoEye-1 and WorldView-2 (고해상도 위성영상 GeoEye-1과 WorldView-2의 RPC 블록조정모델 정확도 분석)

  • Choi, Sun-Yong;Kang, Jun-Mook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.107-116
    • /
    • 2012
  • We investigated the accuracy in three dimensional geo-positioning derived by four high resolution satellite images acquired by two different sensors using the vendor-provided rational polynomial coefficients(RPC) based block adjustment in this research. We used two in-track stereo pairs of GeoEye-1 and WorldView-2 satellite and DGPS surveying data. In this experiment, we analyzed accuracies of RPC block adjustment models of two kinds of homogeneous stereo pairs, four kinds of heterogeneous stereo pairs, three 3 triplet image pairs, and one quadruplet image pair separately. The result shows that the accuracies of the models are nearly same. The accuracy without any GCPs reaches about CEP(90) 2.3m and LEP(90) 2.5m and the accuracy with single GCP is about CEP(90) 0.3m and LEP(90) 0.5m.