• 제목/요약/키워드: Three Dimensional Crack

검색결과 259건 처리시간 0.029초

콘크리트 BOX 구조물의 수화열에 의한 온도균열제어 대책 (A Study on Minimizing for Hydration Heat Cracks of a Subway Concrete Box Structure)

  • 김은겸;전찬기;전중규;배상일
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.705-708
    • /
    • 2006
  • The bigger of concrete structures by a construct technique improvement, and the increase of the cement quantity which is caused by with use of the high-strength concrete for the load-carrying-capacity and a durability cause temperature cracks by a heat of hydration. The temperature crack due to the heat of hydration classified a nonstructural crack. but it has a bad effect on durability of concrete structures. especially, in case of a subway concrete box structure, when a water-proof facilities is beaked on an outer-wall, the water leakage occurs through a penetration crack generated from a wall of the concrete structure too. This paper, for the subway concrete box structure, which is located in chloride attack region, the use of blended cement, the temperature of air and concrete, was considered and analysed by a three dimensional finite element method.

  • PDF

Development of the Fuzzy-Based System for Stress Intensity Factor Analysis

  • Lee, Joon--Seong
    • 한국지능시스템학회논문지
    • /
    • 제12권3호
    • /
    • pp.255-260
    • /
    • 2002
  • This paper describes a fuzzy-based system for analyzing the stress intensity factors (SIFs) of three-dimensional (3D) cracks. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-coded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The singular elements such that the mid-point nodes near crack front are shifted at the quarter-points, and these are automatically placed along the 3D crack front. The complete finite element(FE) model is generated, and a stress analysis is performed. The SIFs are calculated using the displacement extrapolation method. To demonstrate practical performances of the present system, semi-elliptical surface cracks in a inhomogeneous plate subjected to uniform tension are solved.

Numerical analysis of the behaviour of repaired surface cracks with bonded composite patch

  • Merzoug, Mohamed;Boulenouar, Abdelkader;Benguediab, Mohamed
    • Steel and Composite Structures
    • /
    • 제25권2호
    • /
    • pp.209-216
    • /
    • 2017
  • In this paper, the analysis of the behavior of surface cracks in finite-thickness plates repaired with a Boron/Epoxy composite patch is investigated using three-dimensional finite element methods. The stress intensity factor at the crack-front was used as the fracture criteria. Using the Ansys Parametric Design Language (APDL), the stress intensities at the internal and external positions of repaired surface crack were compared. The effects of the mechanical and geometrical properties of the adhesive layer and the composite patch on the variation of the stress intensity factor at the crack-front were examined.

일체형 보강판의 균열성장거동(I)-SIF의 수치해석 (Crack growth behavior in the lntegrally stiffened plates(1) -Numerical evaluation of SIF)

  • 이환우
    • 한국정밀공학회지
    • /
    • 제14권5호
    • /
    • pp.150-156
    • /
    • 1997
  • Three dimensional finite element analysis was conducted to estimate the effect of shape parameters (plate width and thickness) on the stress intensity factor for crack in the integrally stiffened plate. Analysis was done for width ratios of 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, and thickness ratios of 2, 3, 4, 6. Based on these results, an empirical equation of geometry factor is formulated as a function of crack length and thickness ratio.

  • PDF

증기발생기 세관의 파괴저항 특성 측정에 관한 연구 (A Study on the Measurement of Fracture Resistance Characteristics for Steam Generator Tubes)

  • 장윤석;허남수;안민용;황성식;김정수;김영진
    • 대한기계학회논문집A
    • /
    • 제30권4호
    • /
    • pp.420-427
    • /
    • 2006
  • The structural and leakage integrity of steam generator tubes should be sustained against all postulated loads even if a crack is present. During the past three decades, most of the efforts with respect to integrity evaluation of steam generator tubes have been focused on limit load solutions but, recently, the applicability of elastic-plastic fracture mechanics was examined cautiously due to its effectiveness. The purpose of this paper is to introduce a testing method to estimate fracture resistance characteristics of steam generator tubes with a through-wall crack. Due to limited thickness and diameter, inevitably, the steam generator tubes themselves were tested instead of standard specimen or alternative ones. Also, a series of three dimensional elastic-plastic finite element analyses were carried out to derive closed-form estimation equations with respect to J-integral and crack extension for direct current potential drop method. Since the effectiveness of $J_{IC}$ as well as J-R curves was proven through comparison with those of standard specimens taken from pipes, it is believed that the proposed scheme can be utilized as an efficient tool for integrity evaluation of cracked steam generator tubes.

PFC3D simulation of the effect of particle size on the single edge-notched rectangle bar in bending test

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming
    • Structural Engineering and Mechanics
    • /
    • 제68권4호
    • /
    • pp.497-505
    • /
    • 2018
  • Three points bending flexural test was modeled numerically to study the crack propagation in the pre-cracked beams. The pre-existing edge cracks in the beam models were considered to investigate the crack propagation and coalescence paths within the modeled samples. The effects of particle size on the single edge-notched round bar in bending test were considered too. The results show that Failure pattern is constant by increasing the ball diameter. Tensile cracks are dominant mode of failure. These crack initiates from notch tip, propagate parallel to loading axis and coalescence with upper model boundary. Number of cracks increase by decreasing the ball diameter. Also, tensile fracture toughness was decreased with increasing the particle size. In the present study, the influences of particles sizes on the cracks propagations and coalescences in the brittle materials such as rocks and concretes are numerically analyzed by using a three dimensional particle flow code (PFC3D). These analyses improve the understanding of the stability of rocks and concretes structures such as rock slopes, tunnel constructions and underground openings.

Failure mechanisms in coupled soil-foundation systems

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • 제7권1호
    • /
    • pp.27-42
    • /
    • 2018
  • Behavior of soil is usually described with continuum type of failure models such as Mohr-Coulomb or Drucker-Prager model. The main advantage of these models is in a relatively simple and efficient way of predicting the main tendencies and overall behavior of soil in failure analysis of interest for engineering practice. However, the main shortcoming of these models is that they are not able to capture post-peak behavior of soil nor the corresponding failure modes under extreme loading. In this paper we will significantly improve on this state-of-the-art. In particular, we propose the use of a discrete beam lattice model to provide a sharp prediction of inelastic response and failure mechanisms in coupled soil-foundation systems. In the discrete beam lattice model used in this paper, soil is meshed with one-dimensional Timoshenko beam finite elements with embedded strong discontinuities in axial and transverse direction capable of representing crack propagation in mode I and mode II. Mode I relates to crack opening, and mode II relates to crack sliding. To take into account material heterogeneities, we determine fracture limits for each Timoshenko beam with Gaussian random distribution. We compare the results obtained using the discrete beam lattice model against those obtained using the modified three-surface elasto-plastic cap model.

복합재 패치 보강 평판의 균열선단 진전거동 해석 (Analysis of fatigue crack growth behavior in composite-repaired aluminum place)

  • 이우용;이정주
    • Composites Research
    • /
    • 제17권4호
    • /
    • pp.68-73
    • /
    • 2004
  • 본 논문에서는 한 쪽 면만 복합재 패치로 보강한 알루미늄 균열평판의 피로균열 진전거동을 해석적인 방법으로 고찰하였다. 한쪽 면 보강 시, 균열선단은 비대칭성과 면 외 굽힘의 효과로 인하여 초기의 직선형태에서 경사곡선형태로 진전한다는 사실을 이전의 연구견과에서 확인할 수 있다. 따라서 정확한 피로거동을 고찰하기 위하여는 이와 같은 균열선단의 변화과정을 예측하고, 이론 해석에 반영하는 것이 필수적이라 하겠다. 본 연구에서는 균열선단 전개형상을 고려한 한쪽 면 보강시의 피로해석을 수행하기 위하여 선형탄성 파괴역학개념을 적용한 3차원 순차적 유한요소 해석기법을 적용하였는데, 이를 통하여 진전하는 균열선단 형상을 단계적, 반복적으로 추적하고 해석모델에 반영하였다. 이와 같은 해석기법을 적용함으로써 패치보강 평판의 피로수명은 물론 균열선단 진전과정도 정확히 예측할 수 있었다. 해석으로 얻어진 균열선단 진전거동 및 피로수명은 상응하는 실험결과와 잘 일치함을 확인하였다.

두꺼운 배관에 존재하는 축방향 경사관통균열의 탄성파괴역학 매개변수 계산 (Estimates of Elastic Fracture Mechanics Parameters for Thick-Walled Pipes with Slanted Axial Through-Wall Cracks)

  • 한태송;허남수
    • 대한기계학회논문집A
    • /
    • 제36권12호
    • /
    • pp.1521-1528
    • /
    • 2012
  • 본 논문에서는 두꺼운 배관에 존재하는 축방향 경사관통균열의 탄성응력확대계수 및 탄성 균열열림변위 해를 제시하였다. 이를 위해 배관의 두께, 기준균열길이, 경사관통균열 길이비를 체계적으로 변화시키며 3차원 탄성 유한요소해석을 수행하였다. 하중조건으로는 균열 성장에 영향을 미치는 내압을 고려하였다. 유한요소해석 결과를 바탕으로 두꺼운 배관에 존재하는 이상적인 축방향 관통균열과 경사관통균열에 대한 탄성응력확대계수와 탄성 균열열림변위를 균열선단 및 두께를 따라 제시하였다. 특히 응력확대 계수의 경우에는 이상적인 축방향 관통균열 결과로부터 쉽게 경사관통균열의 응력확대계수를 구할 수 있는 경사관통균열 보정계수를 제시하였다.

Three dimensional finite element simulations of fracture tests using the Craft concrete model

  • Jefferson, A.D.;Barr, B.I.G.;Bennett, T.;Hee, S.C.
    • Computers and Concrete
    • /
    • 제1권3호
    • /
    • pp.261-284
    • /
    • 2004
  • Two enhancements to a recently developed plastic-damage-contact model for concrete are presented. The model itself, which uses planes of degradation that can undergo damage and separation but that can regain contact according to a contact law, is described. The first enhancement is a new damage evolution function which provides a completely smooth transition from the undamaged to the damaged state and from pre-peak to post-peak regions. The second is an improved contact function that governs the potential degree of contact with increasing opening on a crack plane. The use of a damage evolution function with a pre-peak has implications for the consistent tangent matrix/stress recovery algorithm developed for the model implementation, and amendments to this algorithm to accommodate the new function are described. A series of unpublished experimental tests on notched specimens undertaken in Cardiff in the mid 1990s are then described. These include notched beam tests as well as prismatic and cylindrical torsion tests. The tests are then considered in three dimensional finite element analyses using the modified Craft model implemented in the finite element program LUSAS. Comparisons between experimental and numerical data show reasonable agreement except that the numerical simulations do not fully describe the latter stages of the softening responses for the torsion examples. Finally, it is concluded that the torsion tests described provide useful benchmark examples for the validation of three-dimensional numerical models for concrete.