• Title/Summary/Keyword: Three Dimensional Complex Geometry

Search Result 77, Processing Time 0.02 seconds

NUMERICAL SIMULATION AND VISUALIZATION OF THE FLOW AROUND THE DARIUS WIND TURBINE

  • KAWAMURA Tetuya;LEE Mi Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.228-229
    • /
    • 2003
  • Complex flow field around the Darius turbine rotating stationally are simulated by solving the three dimensional incompressible Navier-Stokes equation numerically. The rotating coordinate system is employed so that the boundary conditions on the blades of the rotor become simple. In order to impose the boundary condition on the blades precisely, the boundary fitted coordinate system is employed. Fractional step method is used to solve the basic equations. The complex flow fields due to the three dimensionality of the geometry of the turbine and the rotation of the turbine are obtained and they are visualized effectively by using the technique of the computer graphics.

  • PDF

Crystal Structure and Thermal Properties of the Lanthanum(Ⅲ) Complex with Triethylenetetraaminehexaacetic Acid: $K_3$[La(TTHA)]· $5H_2O$

  • 김종혁;이석근
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.4
    • /
    • pp.417-421
    • /
    • 1999
  • The complex, K3[La(TTHA)]5H,O, was prepared and its crystal structure was analyzed by single crystal X-ray diffraction method. In the complex, the La(Ⅲ) ion adopts a ten-coordinate geometry with four nitrogen atoms and six carboxyl oxygen atoms from the same TTHA ligand molecule. Its coordination polyhedron can be described as a distorted bicapped square antiprism. Each [La(TTHA)]3- anion is linked by K+ cations via carboxyl groups of TTHA ligand to form a three dimensional crystal structure. The thermal properties were investigated by TG and DTA techniques in argon atmosphere. The materials resulting from thermal treatment were La(OH)3 and K2O which were identified by powder X-ray diffraction technique.

Hydro/solvothermal synthesis, crystal structure, and thermal behaviour of piperazine-templated nickel(II) and cobalt(II) sulfates

  • Kim, Chong-Hyeak;Park, Chan-Jo;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.309-315
    • /
    • 2006
  • Two piperazine-templated metal sulfate complexes, $(C_4N_2H_{12})[Ni(H_2O)_6](SO_4)_2$, I and ($C_4N_2H_{12}$) $[Co(H_2O)_6](SO_4)_2$, II, have been synthesized by hydro/solvothermal reactions and their crystal structures analyzed by single crystal X-ray diffraction methods. Complex I crystallizes in the monoclinic system, $P2_1/n$ space group, a=12.920(3), b=10.616(2), $c=13.303(2){\AA}$, ${\beta}=114.09(1)^{\circ}$, Z=4, $R_1=0.030$ for 3683 reflections; II: monoclinic $P2_1/n$, a=12.906(3), b=10.711(2), $c=13.303(2){\AA}$, ${\beta}=114.10(2)^{\circ}$, Z=4, $R_1=0.032$ for 4010 reflections. The crystal structures of the piperazine-templated metal(II) sulfates demonstrate zero-dimensional compound constituted by diprotonated piperazine cations, metal(II) cations and sulfate anions. The structures of complex I and II are substantially isostructural to that of the previously reported our piperazine-templated copper(II) sulfate complex $(C_4N_2H_{12})[Cu(H_2O)_6](SO_4)_2$. The central metal(II) atoms are coordinated by six water molecules in the octahedral geometry. The crystal structures are stabilized by three-dimensional networks of the $O_{water}-H{\cdots}O_{sulfate}$ and $N_{pip}-H{\cdots}O_{sulfate}$ hydrogen bonds between the water molecules and sulfate anions and protonated piperazine cations. Based on the results of thermal analysis, the thermal decomposition reactions of the complex I was analyzed to have three distinctive stages whereas the complex II proceed through several stages.

Self-Assembly of Three-Dimensional Copper(II) Macrocyclic Complex with 2,5-Pyridinedicarboxylate Linked by Hydrogen Bond (수소 결합에 의한 삼차원의 Copper(II) 거대고리 착물과 2,5-Pyridinedicarboxylate와의 자기조립)

  • Ki-Young Choi;Haiil Ryu;Yong-Son Kim
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.2
    • /
    • pp.104-108
    • /
    • 2003
  • The reaction of $[Cu(L)]Cl_2{\cdot}H_2O(L=3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,0^{1.18},0^{7.12}]docosane)$ with 2,5-pyridinedicarboxylate(pdc) led to the formation of $[Cu(L)(H_2O)](pdc){\cdot}6H_2O(1)$. The structure was characterized by X-ray crystallography and spectroscopic method. The coordination geometry around the copper atom is a distorted square-pyramid with four secondary amines of the macrocycle occupying the basal sites and a water molecule at the axial position. Intermolecular hydrogen bonds in 1 form a three-dimensional molecular network.

A two-dimensional numerical simulation of the thermal and fluid flow in engine room (엔진룸 내의 열유체 유동의 2차원 수치시뮬레이션)

  • 유정열;윤홍열;이훈구
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.99-104
    • /
    • 1992
  • The complex geometry of the engine room of a passenger car has been modelled two-dimensionally and the thermal and fluid flow therein have been analyzed by using a commercially available code, PATRAN/FLORAM$\mid$N. FLOTRAN adopts a finite element method with streamline upwind formulation for convective terms and the k-.epsilon. turbulence model to solve the three dimensional turbulent flow and heat transfer problems. Velocity vectors, pressure and temperature distributions have been obtained for various cases with different arrangements of license plate, underbody-covers and air dams. The results show that the numerical analysis using PATRAN/FLOTRAN can predict qualitatively well the practical phenomena.

  • PDF

Compressible Parabolized Stability Equation in Curvilinear Coordinate System and integration

  • Gao, Bing;Park, S.O.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.155-174
    • /
    • 2006
  • Parabolized stability equations for compressible flows in general curvilinear coordinate system are derived to deal with a broad range of transition prediction problems on complex geometry. A highly accurate finite difference PSE code has been developed using an implicit marching procedure. Compressible and incompressible flat plate flow stability under two-dimensional and three¬dimensional disturbances has been investigated to test the present code. Results of the present computation are found to be in good agreement with the multiple scale analysis and DNS data. Stability calculation results by the present PSE code for compressible boundary layer at Mach numbers ranging from 0.02 to 1.5 are also presented and are again seen to be as accurate as the spectral method.

A study on the Analogy between Heat Transfer and Mass Transfer (열전달과 물질전달의 유사성에 관한 연구)

  • 유성연;노종광;정문기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2624-2633
    • /
    • 1993
  • Mass transfer experiment by naphthalene sublimation method has great advantages in measurement of local transfer coefficients in the region of a three dimensional flow or for a model of complex geometry, which is considered to be very difficult with conventional heat transfer measurements. Mass transfer data obtained by naphthalene sublimation technique are converted to the heat transfer data through heat/mass transfer analogy. This analogy is valid for a simple or laminar flow, but new insight is needed when applying to a turbulent flow or complex flow such as separation, reattachment and recirculation, The purpose of this research is to investigate how geometries and flow conditions incorporate heat/mass transfer analogy. Mass transfer experiments are performed using naphthalene sublimation technique for a flat plate, a circular cylinder, and rectangular cylinders. And mass transfer data are compared with earlier heat transfer measurements for the same geometries. Usefulness of analogy relation between heat and mass transfer is examined with these results.

Structural characterization and thermal behaviour of the bis(2-aminothiazole)bis(isothiocyanato)zinc(II) complex, Zn(NCS)2(C3H4N2S)2

  • Suh, Seung Wook;Kim, Inn Hoe;Kim, Chong-Hyeak
    • Analytical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.386-390
    • /
    • 2005
  • The zinc(II) complex, $Zn(NCS)_2(C_3H_4N_2S)_2$, I, has been synthesized and characterized by single crystal X-ray diffraction, thermal analysis and infrared spectroscopy. The complex I crystallizes in the triclinic system, $P\bar{1}$ space group with a = 7.587(1), b = 8.815(1), $c=12.432(2){\AA}$, ${\alpha}=75.584(8)$, ${\beta}=83.533(9)$, ${\gamma}=68.686(8)^{\circ}$, $V=750.0(2){\AA}^3$, Z = 2, $R_1=0.036$ and ${\omega}R_2=0.101$. The central Zn(II) atom has a tetrahedral coordination geometry, with the heterocyclic nitrogen atoms of 2-aminothiazole ligands and the nitrogen atoms of isothiocyanate ligands. The crystal structure is stabilized by one-dimensional networks of the intermolecular $N-H{\cdots}S$ hydrogen bonds between the amino group of 2-aminothiazole ligands and the sulfur atom of isothiocyanate ligands. Based on the results of thermal analysis, the thermal decomposition reaction of complex I was analyzed to have three distinctive stages such as the loss of 2-aminothiazole, the decomposition of isothiocyanate and the formation of metal oxide.

A numerical simulation of flow field in a wind farm on complex terrain

  • Lee, Myungsung;Lee, Seung Ho;Hur, Nahmkeon;Choi, Chang-Koon
    • Wind and Structures
    • /
    • v.13 no.4
    • /
    • pp.375-383
    • /
    • 2010
  • A three-dimensional flow simulation was performed to investigate the wind flow around wind-power generation facilities on mountainous area of complex terrain. A digital map of eastern mountainous area of Korea including a wind farm was used to model actual complex terrain. Rotating wind turbines in the wind farm were also modeled in the computational domain with detailed geometry of blade by using the frozen rotor method. Wind direction and speed to be used as a boundary condition were taken from local meteorological reports. The numerical results showed not only details of flow distribution in the wind farm but also the variation in the performance of the wind turbines due to the installed location of the turbines on complex terrain. The wake effect of the upstream turbine on the performance of the downstream one was also examined. The methodology presented in this study may be used in selecting future wind farm site and wind turbine locations in the selected site for possible maximum power generation.

Numerical Fracture Mechanics Evaluation on Surface Cracks in a Spherical Oxygen Holder (구형 산소용기 내 표면균열에 대한 수치파괴역학 평가)

  • Cho, Doo-Ho;Kim, Jong-Min;Chang, Yoon-Suk;Choi, Jae-Boong;Kim, Young-Jin;Han, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1187-1194
    • /
    • 2009
  • During the last decade, possibility of flaw occurrences has been rapidly increased world-widely as the increase of operating times of petro-chemical facilities. For instance, from a recent in-service inspection, three different sized surface cracks were detected in welding parts of a spherical oxygen holder in Korea. While API579 code provides corresponding engineering assessment procedures to determine crack driving forces, in the present work, numerical analyses are carried out for the cracked oxygen holder to investigate effects of complex geometry, analysis model and residual stress. With regard to the detailed finite element analysis, stress intensity factors are determined from both the full three-dimensional model and equivalent plate model. Also, as an alternative, stress intensity factors are calculated for equivalent plate model by employing the noted influence stress function technique. Finally, parametric structural integrity evaluation of the cracked oxygen holder is conducted in use of failure assessment diagram method, J/T method and DPFAD method. Effects of the geometry and so forth are examined and key findings from the simulations are fully discussed, which enables to determine practical safety margins of spherical components containing a defect.