• Title/Summary/Keyword: Thoron

Search Result 10, Processing Time 0.052 seconds

Effective Doses Estimated According to Characteristics of Airborne Radon and Thoron Levels Generated from Some Household Products (일부 생활용품에서 발생한 공기 중 라돈과 토론의 발생 특성 및 연간 유효선량 추정)

  • Park, Dong-Uk;Yi, Seongjin;Kim, So-Yeon;Kwak, Hyunseok;Lee, Seunghee;Park, Jihoon
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.2
    • /
    • pp.99-112
    • /
    • 2019
  • Objective: This study aims to analyze the characteristics of airborne radon and thoron level ($Bq/m^3$) generated from household products containing monazites, and estimate the effective doses (mSv/yr). Method: Radon & Thoron detector EQF3220 was used to monitor real-time airborne radon and thoron level ($Bq/m^3$), and their daughters ($Bq/m^3$) were recorded every two hours. Effective doses (mSv/yr) for radon and thoron were estimated according to models developed by International Commission on Radiological Protection (ICRP) and United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Results: The average levels of radon and thoron were $87.8Bq/m^3$ (range; $20.8-156.3Bq/m^3$) and $1,347.5Bq/m^3$ (range; $4-5,839.7Bq/m^3$), respectively. The average equilibrium factors (F) were 0.23 and 0.007, respectively. The levels of radon progeny were far higher than that thoron. Latex mattress showed the highest F (0.38). The average effective doses were estimated to be ICRP (1.9 mSv/yr) and UNSCER (1.3 mSv/yr) for radon and UNSCEAR (1.6 mSv/yr) for thoron. Conclusions: Our results have far exceeded the allowable effective dose for general population (1 mSv/yr). The government's actions such as the ban of use of consumer products containing monazite and the establishment of surveillance system to evaluate health effects for the people affected should be taken as early as possible.

Characteristics of airborne radon and thoron levels monitored in Seoul Subway stations and circulation lines (서울 일부 지하철 공기 중 라돈과 토론 발생 특성)

  • Kwak, Hyunseok;Kim, So-Yeon;Park, Jihoon;Choi, Sangjun;Park, Dong-Uk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.2
    • /
    • pp.176-184
    • /
    • 2019
  • Objective: This study aims to characterize airborne radon and thoron levels ($Bq/m^3$) generated from working environments in three subway stations in Seoul. Method: A radon and thoron detector (EQF3220) was used to monitor real-time airborne radon and thoron levels ($Bq/m^3$) and their daughters ($Bq/m^3$) every two hours. They were monitored not only in the driver's cabin of seven circulation lines, but also three offices, platforms, and water pump reservoirs in the three stations. Results: The average levels of radon and thoron were $67.9Bq/m^3$ (range; $7.2-619.4Bq/m^3$) and $44.4Bq/m^3$ (range; $4.3-819.2Bq/m^3$), respectively. Notably, higher than legal airborne radon levels ($600Bq/m^3$) were frequently monitored in the driver's cabin of seven circulation lines. Airborne radon levels monitored in the platforms and administrative offices were found to be over $100Bq/m^3$. The average equilibrium factors (F) were 0.12 and 0.06, respectively. The percentages detected were found to be 84.9 for radon and 72.4 for thoron, respectively. Conclusions: Significant airborne radon and thoron levels were frequently found to be generated in subway facilities including water reservoirs, platforms and driver's cabins. Further study is necessary to thoroughly investigate airborne radon and thoron in all subway stations and to devise proper measures.

Estimation of natural radionuclide and exhalation rates of environmental radioactive pollutants from the soil of northern India

  • Devi, Vandana;Chauhan, Rishi Pal
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1289-1296
    • /
    • 2020
  • The estimation of radioactivity level is vital for population health risk assessment and geological point of view and can be evaluated as rate of exhalation and source concentration (226Ra, 232Th and 40K). The present study deals with the soil samples for investigation of radionuclides content and exhalation rates of radon -thoron gas from different sites in northern Haryana, India. Absorbed dose and associated index estimated in the present study are the measures of environmental radioactivity to inhalation dose. Effective doses received by different tissues and organs by considering different occupancy and conditions are also measured. Exhalation rates of radon and thoron are measured with active scintillation monitors based on alpha spectroscopy namely scintillation radon (SRM) and thoron (STM) monitors respectively. Sample height was optimized before measurement of thoron exhalation rate using STM. Average values of radon and thoron exhalation are found 16.6 ± 0.7 mBqkg-1h-1 and 132.1 ± 2.6 mBqm-2s-1 respectively. Also, a simple approach was also adopted, to evaluate the thoron exhalation which accomplished a lot of challenges, the results are compared with the data obtained experimentally. The study is useful in the nationwide mapping of radon and thoron exhalation rates for understanding the environmental radioactivity status.

A preliminary study on real-time Rn/Tn discriminative detection using air-flow delay in two ion chambers in series

  • Sopan Das ;Junhyeok Kim ;Jaehyun Park ;Hojong Chang;Gyuseong Cho
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4644-4651
    • /
    • 2022
  • Due to its short half-life, thoron gas has been assumed to have negligible health hazards on humans compared to radon. But, one of the decay products with a long half-life can make it to be transported to a long distance and to cause a severe internal dose through respiration. Since most commercial radon detectors can not discriminate thoron signals from radon signals, it is very common to overestimate radon doses which in turn result in biased estimation of lung cancer risk in epidemiological studies. Though some methods had been suggested to measure thoron and radon separately, they could not be used for real-time measurement because of CR-39 or LR-115. In this study, an effective method was suggested to measure radon and thoron separately from the free air. It was observed that the activity of thoron decreases exponentially due to delay time caused by a long pipe between two chambers. Therefore from two ion chambers apart in time, it was demonstrated that thoron and radon could be measured separately and simultaneously. We also developed a collimated alpha source and with this source and an SBD, we could convert the ion chamber reading to count rate in cps.

From Radon and Thoron Measurements, Inhalation Dose Assessment to National Regulation and Radon Action Plan in Cameroon

  • Saidou;Shinji Tokonami;Masahiro Hosoda;Augustin Simo;Joseph Victor Hell;Olga German;Esmel Gislere Oscar Meless
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.4
    • /
    • pp.237-245
    • /
    • 2022
  • Background: The current study reports measurements of activity concentrations of radon (220Rn) and thoron (220Rn) in dwellings, followed by inhalation dose assessment of the public, and then by the development of regulation and the national radon action plan (NRAP) in Cameroon. Materials and Methods: Radon, thoron, and thoron progeny measurements were carried out from 2014 to 2017 using radon-thoron discriminative detectors (commercially RADUET) in 450 dwellings and thoron progeny monitors in 350 dwellings. From 2019 to 2020, radon track detectors (commercially RADTRAK) were deployed in 1,400 dwellings. It was found that activity concentrations of radon range in 1,850 houses from 10 to 2,620 Bq/㎥ with a geometric mean of 76 Bq/㎥. Results and Discussion: Activity concentrations of thoron range from 20 to 700 Bq/㎥ with a geometric mean of 107 Bq/㎥. Thoron equilibrium factor ranges from 0.01 to 0.6, with an arithmetic mean of 0.09 that is higher than the default value of 0.02 given by UNSCEAR. On average, 49%, 9%, and 2% of all surveyed houses have radon concentrations above 100, 200, and 300 Bq/㎥, respectively. The average contribution of thoron to the inhalation dose due to radon and thoron exposure is about 40%. Thus, thoron cannot be neglected in dose assessment to avoid biased results in radio-epidemiological studies. Only radon was considered in the drafted regulation and in the NRAP adopted in October 2020. Reference levels of 300 Bq/㎥ and 1,000 Bq/㎥ were recommended for dwellings and workplaces. Conclusion: Priority actions for the coming years include the following: radon risk mapping, promotion of a protection policy against radon in buildings, integration of the radon prevention and mitigation into the training of construction specialists, mitigation of dwellings and workplaces with high radon levels, increased public awareness of the health risks associated with radon, and development of programs on the scientific and technical aspects.

Indoor radon and thoron from building materials: Analysis of humidity, air exchange rate, and dose assessment

  • Syuryavin, Ahmad Ciptadi;Park, Seongjin;Nirwono, Muttaqin Margo;Lee, Sang Hoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2370-2378
    • /
    • 2020
  • Building materials contribute significantly to the indoor radon and thoron levels. Therefore, parameters that influence the exhalation rates of radon and thoron from building material need to be analyzed closely. As a preliminary study, the effects of humidity on exhalation rates were measured using a system with an accumulation chamber and RAD7 detector for Korean brick, Korean soil, and Indonesian brick. Resulting doses to a person who resides in a room constructed from the building materials were assessed by UNSCEAR method for different air exchange rates. The measurements have revealed that Korean brick exhaled the highest radon and thoron while Indonesian brick exhaled the lowest thoron. Results showed that for a typical low dense material, radon and thoron exhalation rate will increase until reached its maximum at a certain value of humidity and will remain saturated above it. Analysis on concentration and effective dose showed that radon is strongly affected by air exchange rate (ACH). This is showed by about 66 times decrease of radon dose from 0.00 h-1 to those of 0.50 h-1 ACH and decrease by a factor of 2 from 0.50 h-1 to those of 0.80 h-1. In case of thoron, the ACH doesn't have significant effects on effective dose.

Characteristics of Internal and External Exposure of Radon and Thoron in Process Handling Monazite (모나자이트 취급공정에서의 라돈 및 토론 노출 특성)

  • Chung, Eun Kyo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.2
    • /
    • pp.167-175
    • /
    • 2019
  • Objectives: The purpose of this study was to evaluate airborne radon and thoron levels and estimate the effective doses of workers who made household goods and mattresses using monazite. Methods: Airborne radon and thoron concentrations were measured using continuous monitors (Rad7, Durridge Company Inc., USA). Radon and thoron concentrations in the air were converted to radon doses using the dose conversion factor recommended by the Nuclear Safety and Security Commission in Korea. External exposure to gamma rays was measured at the chest height of a worker from the source using real-time radiation instruments, a survey meter (RadiagemTM 2000, Canberra Industries, Inc., USA), and an ion chamber (OD-01 Hx, STEP Co., Germany). Results: When using monazite, the average concentration range of radon was $13.1-97.8Bq/m^3$ and thoron was $210.1-841.4Bq/m^3$. When monazite was not used, the average concentration range of radon was $2.6-10.8Bq/m^3$ and the maximum was $1.7-66.2Bq/m^3$. Since monazite has a higher content of thorium than uranium, the effects of thoron should be considered. The effective doses of radon and thoron as calculated by the dose conversion factor based on ICRP 115 were 0.26 mSv/yr and 0.76 mSv/yr, respectively, at their maximum values. The external radiation dose rate was $6.7{\mu}Sv/hr$ at chest height and the effective dose was 4.3 mSv/yr at the maximum. Conclusions: Regardless of the use of monazite, the total annual effective doses due to internal and external exposure were 0.03-4.42 mSv/yr. Exposures to levels higher than this value are indicated if dose conversion factors based on the recently published ICRP 137 are applied.

Radon and thoron concentrations inside ancient Egyptian tombs at Saqqara region: Time-resolved and seasonal variation measurements

  • Salama, E.;Ehab, M.;Ruhm, W.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.950-956
    • /
    • 2018
  • For complete assessment of inhalation doses of radon and its progeny inside the three main ancient Egyptian tombs in Saqqara, seasonal radon concentrations have been measured by using a new electronic device that allows for measurement of real-time-resolved radon concentrations. Measurements were complemented by very fast measurements of thoron concentrations, which turned out to be low. Based on these measurements, annual residence time inside these tombs and the newest International Commission on Radiological Protection-recommended radon dose conversion coefficients or seasonal effective doses were calculated. The results indicate that workers receive highest annual effective doses of up to 140 mSv, which exceeds the annual limit of 20 mSv, whereas lower values up to 15 mSv are received by guides. In contrast, much lower doses were obtained for one-time visitors of the investigated tombs. The obtained results are somewhat different but still consistent with those previously obtained by means of fixed passive dose meters at some of the investigated places. This indicates that reasonable estimates of the effective dose of radon can be also obtained from short-term radon measurements carried out only twice a year (summer and winter season). Increasing the ventilation, minimizing the working times, etc., are highly recommended to reduce the annual effective dose.

Measurement of the radon and thoron exhalation rates from the water surface of Yixin lake

  • Jiulin Wu;Shuaibin Liu;Tao Hu;Fen Lin;Ruomei Xie;Shuai Yuan;Haibo Yi;Yixiang Mo;Jiale Sun;Linquan Cheng;Huiying Li;Zhipeng Liu;Zhongkai Fan;Yanliang Tan
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1538-1543
    • /
    • 2024
  • The importance of determining the radon exhalation rate from water surface is emphasized by the increased use of radon and its daughter products as tracers in large-scale circulation studies of the atmosphere. There were many methods to measure radon exhalation from water surface. With the development of radon exhalation rate measurement methods and instruments on the surface of the soil, the rock and building materials, so the radon exhalation rate from water surface can be more accurately measured by applying these improved methods and instruments. In this paper, a cuboid accumulation chamber surrounded by foam boards and a RAD7 were used to measure the radon exhalation rate on the water surface at three different positions by Yixin lake. Each measurement was performed 2 h. The radon exhalation rate from the water surface was about 6 × 10-3 Bq m-2s-1. The thoron exhalation rate from the water surface also can be estimated, it is about 0.16 Bq m-2s-1. These results hint that the radon transmission from the lake bottom soil to water and then into the atmosphere.

Association of the Risk of Leukemia and Non-Hodgkin's Lymphoma (NHL) with Environmental Agents (모 지역의 소아 백혈병 및 악성림프종 발병 사례와 환경적 요인의 연관성 조사)

  • Park, Dong-Uk;Choi, Sangjun;Youn, Kanwoo;Kim, So-Yeon;Kim, Hee-Yun;Park, Yun-Kyung;Kim, Won;Iim, Sanghyuk;Park, Jihoon
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.3
    • /
    • pp.203-212
    • /
    • 2019
  • Objective: A total of five students at same middle school were reported to be diagnosed with pediatric leukemia (n=2), non-Hodgkin's lymphoma (NHL, n=1) and aplastic anemia (n=2) between 2016 and 2017. The aims of this study are to assess exposure to environmental hazardous agents known to be associated with the risk of leukemia and to examine whether the environment of school is associated with the risk leukemia. Method: A total of 11 environmental agents causing childhood leukemia were monitored using international certified method in schools where patients had ever attended. Radon & Thoron detector was used to monitor real-time airborne radon and thoron level ($Bq/m^3$). Clinician interviewed two among nine patients who agreed to participate in this study in order to examine the association of demographic and genetic factors by individually. Leukemia, NHL, and aplastic anemia were grouped into lymphohematopoietic disorder (LHP). Results: Except for airborne radon level, no environmental agents in school and household where patients may be exposed were found to higher than recommended airborne level. Clinical investigation found no individual factors that may be associated with the risk of LHP. Higher airborne radon level than Korea EPA's airborne radon criteria ($148Bq/m^3$) was monitored at most of several after-class room of one elementary school, where two leukemia patients graduated. Significant radon level was not monitored at class-room. Significant exposure to radon of patients was not estimated based on time-activity pattern. Conclusions: Our results have concluded that there have been no environmental factors in school and household environment that may be associated the risk of LHP.