• 제목/요약/키워드: Thorax, CT

검색결과 57건 처리시간 0.018초

흉부질환의 자기공명영상 (Magnetic Resonance Imaging in Thoracic Disease)

  • 송군식
    • Tuberculosis and Respiratory Diseases
    • /
    • 제40권4호
    • /
    • pp.345-352
    • /
    • 1993
  • The role of magnetic resonance(MR) imaging in the evaluation of thoracic disease has been limited Nontheless, MR has inherent properties of better contrast resolution than CT allowing tissue-specific diagnosis. MR has capability of direct imaging in sagittal, coronal, and oblique planes which provide better anatomic information than axial images of CT such as lesions in the pulmonary apex, aorticopulmonary window, peridiaphragmatic region, and subcarinal region. MR is sensitive to blood flow making it an ideal imaging modality for the evaluation of cardiovascular system of the thorax without the need for intravenous contrast media. Technical developments and better control of motion artifacts have resulted in improved image quality, and clinical applications of MR imaging in thoracic diseases have been expanded. Although MR imaging is considered as a problem-solving tool in patients with equivocal CT findings, MR should be used as the primary imaging modality in the following situations: 1) Evaluation of the cardiovascular abnormalities of the thorax 2) Evaluation of the superior sulcus tumors 3) Evaluation of the chest wall invasion or mediastinal invasion by tumor 4) Evaluation of the posterior mediastinal mass, especially neurogenic tumor 5) Differentiation of fibrosis and residual or recurrent tumor, especially in lymphoma 6) Evaluation of brachial plexopathy With technical developments and fast scan capabilities, clinical indications for MR imaging in thorax will increase in the area of pulmonary parenchymal and pulmonary vascular imaging.

  • PDF

CT검사에서 조영제의 혈관외유출에 의한 목 및 흉부 손상의 3차원 재구성 영상 (Extravasation Injury of Contrast Media in the Neck and Thorax During MDCT Scanning with 3D Image Reformation Findings)

  • 권대철;장근조;유병규;이종석
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제30권3호
    • /
    • pp.281-287
    • /
    • 2007
  • 전산화단층촬영에서 조영제를 자동주입기로 주입하는 과정에서 발생하는 혈관외유출은 조직의 괴사 및 손상의 원인이 되고 있다. 대량의 혈관외유출은 구획증후군으로 발전하여 근막절개술을 시행하는 경우가 발생한다. 혈관외유출이 발생한 환자를 대상으로 혈관외유출 범위 및 부위 정도를 평가하기 위해 CT 검사에서 경정맥에 조영제을 주입하는 과정에서 혈관외유출이 발생한 환자를 대상으로 하였다. 조영제에 의한 혈관외유출 범위 및 손상을 확인하기 조영제 주입부위의 목 및 가슴의 부위를 MDCT를 이용하여 스캔하였다. 경정맥 주사부위의 혈관외유출부위를 MPR, MIP와 볼륨 렌더링의 3차원영상을 3D 프로그램을 이용하여 묘출하였다. 3차원 재구성 영상은 높은 해상력과 정확도를 제공하여 혈관외유출 범위 및 부위를 확인 하여, 환자의 예방의 필요성 및 사후 조치 및 적절한 치료와 수술 계획에 유용하게 이용될 것으로 기대된다.

  • PDF

전산화(電算化) 단층촬영기(斷層撮影機)의 보유현황(保有現況) 및 이용실태(利用實態) (부산시내(釜山市內) 병원(病院)을 중심(中心)으로) (A Study on the Status and Utilization of Computed Tomography Units in Pusan Area)

  • 오문영
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제14권1호
    • /
    • pp.29-44
    • /
    • 1991
  • A Study on the distribution and types of the total 40 CT units, as of 1st October 1990, in Pusan area(29 for whole body CT units, 11 for brain CT units) were carried out during the period from January 1989 to December 1989 to find out the status of operation and utilization of whole body CT units. The results were as following ; 1. As of 1st October 1990 in Pusan area, a total of 40 CT units(29 for whole body CT units, 11 for brain CT units) were set up and operated. The number of cases of CT examination performed per day per unit were appeared to be less than 5 cases among 59.5% of CT units, and 2.7% of the total units has peformed more than 16 examinations. 2. The CT units under operation occupied 93.5% of the total and 2.6% of the total units was not properly been operated due to mechanical breakdown. This results is appeared to be better than other reports. 3. The average number of scanning per week for each CT were 35 cases and the average days under operation of the unit per week were 6.7 days. Consequently, the average days under operation of units was higher than that of the other reports, but the average number of scanning was lower. 4. The cases referred from other institutes to hospitals were 6.4% of total cases. 5. As a site of scanning, the brain appeared most frequently with 71.2% of the total cases and followed by spine 12.4%, abdomen 8.5%, and thorax 3.6%, respectively. 6. Positive rate by scanning was 70.8% of total cases, and it was 98.9% with thorax, abdomen 96.3%, spine 93.1%, and brain 38.4%, respectively. According to the results of this study, it is highly recommended that the regulations and the guidelines for setting-up of such high cost medical equipments as CT units be provided in order to ensure the cost-effectiveness of the system.

  • PDF

흉부의 자기공명영상 (Magnetic Resonance Imaging in Thorax)

  • 최병욱
    • Tuberculosis and Respiratory Diseases
    • /
    • 제56권6호
    • /
    • pp.571-584
    • /
    • 2004
  • Magnetic Resonance Imaging (MRI) is one of the most advanced imaging techniques in clinical and research medicine. However, clinical application of MRI to the lung or thorax has been limited due to various drawbacks. Low signal intensity of the lung and cardiac and respiratory movements are the most serious problems with MRI in thorax. Nevertheless, MRI is superior to CT in some selected patients with thoracic diseases. The role of clinical MRI in thoracic disease has been widened with improvement of MR equipments and development of new pulse sequences. Otherwise, functional assessment of lung by MRI has been studied for the last decade. These include perfusion MRI with or without contrast enhancement and ventilation MRI with oxygen-enhancement or hyperpolarized noble gas, $^3He$ and $^{129}Xe$.

Quantitative Vertebral Bone Density Seen on Chest CT in Chronic Obstructive Pulmonary Disease Patients: Association with Mortality in the Korean Obstructive Lung Disease Cohort

  • Hye Jeon Hwang;Sang Min Lee;Joon Beom Seo;Ji-Eun Kim;Hye Young Choi;Namkug Kim;Jae Seung Lee;Sei Won Lee;Yeon-Mok Oh
    • Korean Journal of Radiology
    • /
    • 제21권7호
    • /
    • pp.880-890
    • /
    • 2020
  • Objective: Patients with chronic obstructive pulmonary disease (COPD) are known to be at risk of osteoporosis. The purpose of this study was to evaluate the association between thoracic vertebral bone density measured on chest CT (DThorax) and clinical variables, including survival, in patients with COPD. Materials and Methods: A total of 322 patients with COPD were selected from the Korean Obstructive Lung Disease (KOLD) cohort. DThorax was measured by averaging the CT values of three consecutive vertebral bodies at the level of the left main coronary artery with a round region of interest as large as possible within the anterior column of each vertebral body using an in-house software. Associations between DThorax and clinical variables, including survival, pulmonary function test (PFT) results, and CT densitometry, were evaluated. Results: The median follow-up time was 7.3 years (range: 0.1-12.4 years). Fifty-six patients (17.4%) died. DThorax differed significantly between the different Global Initiative for Chronic Obstructive Lung Disease stages. DThorax correlated positively with body mass index (BMI), some PFT results, and the six-minute walk distance, and correlated negatively with the emphysema index (EI) (all p < 0.05). In the univariate Cox analysis, older age (hazard ratio [HR], 3.617; 95% confidence interval [CI], 2.119-6.173, p < 0.001), lower BMI (HR, 3.589; 95% CI, 2.122-6.071, p < 0.001), lower forced expiratory volume in one second (FEV1) (HR, 2.975; 95% CI, 1.682-5.262, p < 0.001), lower diffusing capacity of the lung for carbon monoxide corrected with hemoglobin (DLCO) (HR, 4.595; 95% CI, 2.665-7.924, p < 0.001), higher EI (HR, 3.722; 95% CI, 2.192-6.319, p < 0.001), presence of vertebral fractures (HR, 2.062; 95% CI, 1.154-3.683, p = 0.015), and lower DThorax (HR, 2.773; 95% CI, 1.620-4.746, p < 0.001) were significantly associated with all-cause mortality and lung-related mortality. In the multivariate Cox analysis, lower DThorax (HR, 1.957; 95% CI, 1.075-3.563, p = 0.028) along with older age, lower BMI, lower FEV1, and lower DLCO were independent predictors of all-cause mortality. Conclusion: The thoracic vertebral bone density measured on chest CT demonstrated significant associations with the patients' mortality and clinical variables of disease severity in the COPD patients included in KOLD cohort.

Four-Dimensional Thoracic CT in Free-Breathing Children

  • Hyun Woo Goo
    • Korean Journal of Radiology
    • /
    • 제20권1호
    • /
    • pp.50-57
    • /
    • 2019
  • In pediatric thoracic CT, respiratory motion is generally treated as a motion artifact degrading the image quality. Conversely, respiratory motion in the thorax can be used to answer important clinical questions, that cannot be assessed adequately via conventional static thoracic CT, by utilizing four-dimensional (4D) CT. However, clinical experiences of 4D thoracic CT are quite limited. In order to use 4D thoracic CT properly, imagers should understand imaging techniques, radiation dose optimization methods, and normal as well as typical abnormal imaging appearances. In this article, the imaging techniques of pediatric thoracic 4D CT are reviewed with an emphasis on radiation dose. In addition, several clinical applications of pediatric 4D thoracic CT are addressed in various thoracic functional abnormalities, including upper airway obstruction, tracheobronchomalacia, pulmonary air trapping, abnormal diaphragmatic motion, and tumor invasion. One may further explore the clinical usefulness of 4D thoracic CT in free-breathing children, which can enrich one's clinical practice.

흉부 전산화 단층촬영을 이용한 혈흉의 정량분석 (Quantitative analysis of hemothorax by computed tomography)

  • 강청희
    • Journal of Chest Surgery
    • /
    • 제28권3호
    • /
    • pp.228-232
    • /
    • 1995
  • Computed tomography[CT is an effective technique for the evaluation of the thorax following blunt trauma. To evaluate multiply injured 30 patients who were diagnosed as hemothorax in emergency room, computed tomography of thorax was done. The thickness of slice was one centimeter and the entire pleural cavity from the apex to the costophrenic angle was included in the evaluation. Integration and addition of the hemothorax area for each CT slice was made and amount of blood in the pleural cavity was estimated. The slice which showed largest area of hemothorax was selected and the height and width of the hemothorax area were measured. The number of slices which showed radiographic evidence of hemothorax was counted. Regression analysis was done and measured amount of hemothorax, the height and width of the hemothorax area for each slice and number of slices were put as variables. And following equation was derived. V=108.3A-0.8B-7.4C+84.7 [R2=0.74 [ V: amount of hemothorax, A: height, B: width, C: number of slices Total amount of blood from thoracic drainage was compared to the measured amount by computed tomography and the relation between the two values was statistically significant.[p=0.001 In conclusion, quantitative estimation of size of hemothorax was possible by the above equation and the process was very helpful for determination policy of treatment of individual patient.

  • PDF

흉부 CT 영상의 밝기값 정보를 사용한 폐구조물 자동 분할 (Automatic Segmentation of Pulmonary Structures using Gray-level Information of Chest CT Images)

  • 임예니;홍헬렌
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권11호
    • /
    • pp.942-952
    • /
    • 2006
  • 본 논문에서는 흉부 CT 영상의 밝기값 정보를 사용하여 폐 구조물을 자동 분할하기 위한 방법을 제안한다. 본 제안방법은 다음과 같은 다섯 단계로 구성된다. 첫 번째, 영상의 밝기값 차이를 이용하여 폐 구조물을 분할하기 위해 최적 임계값 기법을 사용하여 임계값을 계산한다. 두 번째, 흉부 CT 영상에 2차원 영역성장법의 역 연산을 사용하여 배경으로부터 흉부를, 흉부로부터 기관지 및 폐를 단계적으로 분할한다. 이 때, 밝기값이 비슷한 다른 영역들을 3차원 연결화소군 레이블링을 통해 제거한다. 세 번째, 흉부 CT 영상에 3차원 분기 기반 영역성장법을 적용하여 기관과 좌우 기관지를 분할한다. 네 번째, 기관지 및 폐에서 기관지를 영상 감산함으로써 정확한 폐 영역을 얻는다. 마지막으로, 히스토그램 분석을 통해 임계값을 계산하고 기관지 및 폐에 밝기값 기반 임계값 기법을 적용하여 폐혈관을 분할한다. 제안방법의 정확성을 검증하기 위해 폐, 기관지, 폐혈관의 분할 결과에 대해 육안평가를 수행한다. 제안한 3차원 분기 기반 영역성장법을 통한 기관지 분할 결과를 평가하기 위해 기존 영역성장법으로 분할한 결과와 비교한다. 실험 결과는 제안 분할 방법이 폐, 기관지, 폐혈관을 자동으로 정확하게 추출함을 보여준다.

전산화단층촬영검사 시 검사실 내에 위치할 수 있는 의료인의 간접 피폭선량에 대한 연구 (A Study on the Indirect Radiation Exposure of the Medical Personnel Who is Responsible for Patient Safety in CT Examination)

  • 최민혁;장지성;이기백
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제42권2호
    • /
    • pp.105-111
    • /
    • 2019
  • A medical personnel could be placed beside a patient together in CT room to do Ambu-bag for a seriously ill patients or emergency patient. At this time, the medical personnel can be exposed indirect radiation unnecessarily. In this case, it is necessary to recognize indirect radiation dose levels and methods to reduce them using actual clinical CT protocols such as Chest, Abdomen, and Brain CT. We researched surface radiation dose with or without radiation protectors such as apron and goggles according to different distances far from gantry using two different CT scanners (Fixed MDCT and mobile CT). As a result, for Chest, Abdomen, and Brain CT with Fixed MDCT, indirect radiation dose on thorax portion were 0.047, 0.089, 0.034 mSv without apron. Also, those with apron were 0.007, 0.012, 0.006 mSv. In case of mobile CT, it was 0.014 mSv without apron and 0.005 mSv with apron. By using protectors and increasing the distance, we could reduce it to 97%. Systematic management is necessary based on the measured data in order to minimize radiation damage due to indirect exposure dose.