• Title/Summary/Keyword: Third harmonic

Search Result 218, Processing Time 0.042 seconds

A Harmonic Suppressed Design of Size Reduced Ring-Hybrid Using Folded Line Structure (소형화 및 고조파 특성이 개선된 접힌 구조의 링-하이브리드의 설계)

  • Lee Hong-Seop;Lee Chul-Heui;Hwang Hee-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.9 s.112
    • /
    • pp.845-851
    • /
    • 2006
  • Folded lines are applied to design a compact microstrip ring hybrid. Using the proposed structure we achieve both significant size reduction and good harmonic suppression with the same results of conventional ring hybrid at 2.41 GHz. Including the third harmonic frequency, up to 11 GHz band harmonics are suppressed to -20 dB. The size of the proposed ring-hybrid is reduced to one forth of the conventional ring hybrid. The measured frequency responses agree well with simulated ones.

A High Gain and High Harmonic Rejection LNA Using High Q Series Resonance Technique for SDR Receiver

  • Kim, Byungjoon;Kim, Duksoo;Nam, Sangwook
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.2
    • /
    • pp.47-53
    • /
    • 2014
  • This paper presents a high gain and high harmonic rejection low-noise amplifier (LNA) for software-defined radio receiver. This LNA exploits the high quality factor (Q) series resonance technique. High Q series resonance can amplify the in-band signal voltage and attenuate the out-band signals. This is achieved by a source impedance transformation. This technique does not consume power and can easily support multiband operation. The chip is fabricated in a $0.13-{\mu}m$ CMOS. It supports four bands (640, 710, 830, and 1,070MHz). The measured forward gain ($S_{21}$) is between 12.1 and 17.4 dB and the noise figure is between 2.7 and 3.3 dB. The IIP3 measures between -5.7 and -10.8 dBm, and the third harmonic rejection ratios are more than 30 dB. The LNA consumes 9.6 mW from a 1.2-V supply.

Fundamental second-order and third-order Nonlinear Distortions in Semiconductor Lasers (반도체 레이저에서의 2차 및 3차 비선형 왜곡의 특성)

  • 이경식;문용수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.5
    • /
    • pp.18-26
    • /
    • 1994
  • We express fundamental second-order and third- order harmonic distortions and intermodulation distortions in terms of the laser parameters. Compared to the Darcie `s result only limited to the high frequency (f >1GHz), these expression are quite valid in the entire modulation frequency region. It is found that the fundamental nonlinear distortions are strongly effected by the spontaneous emission to lasing mode as well as the gain compresion damping in the low frequency region.

  • PDF

A Study of the SPWM High-Frequency Harmonic Circulating Currents in Modular Inverters

  • Xu, Sheng;Ji, Zhendong
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2119-2128
    • /
    • 2016
  • Due to detection and control errors, some high-frequency harmonics with voltage-source characteristics cause circulating currents in modular inverters. Moreover, the circulating currents are usually affected by the output filters (OF) of each module due to their filter and resonance properties. The interaction among the circulating currents in the modules increase the power loss and reduce system stability and control precision. Therefore, this paper reports the results of a study on the SPWM high-frequency harmonics circulating currents for a double-module VSI. In the paper, an analysis of the circulating-current circuits is briefly described. Next, a mathematic model of the single-module output voltage based on the carrier frequency of SPWM is built. On this basis, through mathematic modeling of high-frequency harmonic circulating currents, the formation mechanism and distribution characteristics of circular currents and their influences are studied in detail. Finally, the influences of the OF on the circulating currents are studied by mainly taking an LC-type filter as an example. A theoretical analysis and experimental results demonstrate some important characteristics. First, the carrier phase shifting of the SPWM for each module is the major cause of the SPWM harmonic circulating currents, and the circulating currents are in an odd distribution around n-times the carrier frequency $n{\omega}_s$, where n = 1, 2, 3, ${\ldots}$. Second, the harmonic circular currents do not flow into the parallel system. Third, the OF can effectively suppress the non-circulating part of the high-frequency harmonic currents but is ineffective for the circulation part, and actually reduces system stability.

Design of a New Harmonic Noise Frequency Filtering Down-Converter in InGaP/GaAs HBT Process

  • Wang, Cong;Yoon, Jae-Ho;Kim, Nam-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.2
    • /
    • pp.98-104
    • /
    • 2009
  • An InGaP/GaAs MMIC LC VCO designed with Harmonic Noise Frequency Filtering(HNFF) technique is presented. In this VCO, internal inductance is found to lower the phase noise, based on an analytic understanding of phase noise. This VCO directly drives the on-chip double balanced mixer to convert RF carrier to IF frequency through local oscillator. Furthermore, final power performance is improved by output amplifier. This paper presents the design for a 1.721 GHz enhanced LC VCO, high power double balance mixer, and output amplifier that have been designed to optimize low phase noise and high output power. The presented asymmetric inductance tank(AIT) VCO exhibited a phase noise of -133.96 dBc/Hz at 1 MHz offset and a tuning range from 1.46 GHz to 1.721 GHz. In measurement, on-chip down-converter shows a third-order input intercept point(IIP3) of 12.55 dBm, a third-order output intercept point(OIP3) of 21.45 dBm, an RF return loss of -31 dB, and an IF return loss of -26 dB. The RF-IF isolation is -57 dB. Also, a conversion gain is 8.9 dB through output amplifier. The total on-chip down-converter is implanted in 2.56${\times}$1.07 mm$^2$ of chip area.

Development of a Deterioration Diagnostic Device for ZnO Arrester by Leakage Current Detection (누설전류 검출에 의한 ZnO 피뢰기의 열화진단장치 개발)

  • Kim, Jae-Chul;Lee, Bo-Ho;Oh, Jung-Hwan;Lee, Young-Gil;Moon, Sun-Ho;Kim, Young-Chun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.184-189
    • /
    • 1999
  • In this paper, we develope a diagnosis device for ZnO arrester by detecting the leakage current in service. To diagnose the deterioration of ZnO arrester, the device detects the total leakage current which flows between an arrester and ground, and analyzes the resistive current(third harmonic current) which is an indicator of deterioration of ZnO arrester. We use the optical cable which can transfer a detected data without a noise, also use a microprocessor for a data storage, processing, and trend analysis. Experiment are executed to verify its performance in laboratory and the results show that the diagnosis device exactly detects the total leakage current and the resistive current, so it can diagnose the deterioration of ZnO arrester. Also the leakage current of ZnO arrester is detected using the developed diagnostic device in field, these results are presented.

  • PDF

Estimation of Nonlinear Distortion in Communication Systems Using Random Digital Signals (랜덤 디지탈 신호를 사용한 통신 시스템의 비선형 왜곡 추정)

  • 손주신;조용수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.4
    • /
    • pp.660-668
    • /
    • 1994
  • In this paper, a new approach to estimate nonmlinear distortions (second-harmonic, second-intermodulation, third-harmonic, and third-intermodulation) in digital communication systems is proposed. In contrast to the relatively common sine-wave input approach which requires repetition of the same experiments by changing frequencies of oscillators and filters over the band of frequencies of interest, the proposed approach uses digital random input (transmitted signal in digital communication system) to adaptively estimate parameters of a nonlinear channel in time-domain. Nonlinear distortion of the channel is estimated on line by transforming the estimated parameters into frequency-domain. Comparison between the classical two-tone input approach and the proposed approach is made through computer simulation.

  • PDF

Low Phase Noise VCO using Output Matching Network Based on Harmonic Control Circuit (고조파 조절 회로를 기반으로 한 출력 정합 회로를 이용한 저위상 잡음 전압 제어 발진기)

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.2
    • /
    • pp.137-144
    • /
    • 2008
  • In this paper, a novel voltage-controlled oscillator(VCO) using the output matching network based on the harmonic control circuit is presented for improving the phase noise property. The phase noise suppression is achieved through the harmonic control circuit having the short impedances for both second-harmonic and third-harmonic components, which has been connected at the output matching network. Also, we have used the microstrip square open loop multiple split-ring resonator(OLMSRR) having the high-Q property to further reduce the phase noise of VCO. Because the output matching network based on the harmonic control circuit has been used for reducing the phase noise property instead of the High-Q resonator, we can obtain the broad tuning range by the low-Q resonator. The phase noise of the proposed VCO using the output matching network based on the harmonic control circuit and the microstrip square OLMSRR has been $-127.5{\sim}126.33$ dBc/Hz @ 100 kHz in the tuning range, $5.744{\sim}5.839$ GHz. Compared with the reference VCO using the output matching network without the harmonic control circuit and the microstrip line resonator, the phase noise property of the proposed VCO has been improved in 26.66 dB.