• 제목/요약/키워드: Thiol ester

검색결과 11건 처리시간 0.023초

티올기를 함유하는 킬레이트 수지의 합성 및 특성 (Synthesis and Characterization of Chelating Resins Containing Thiol Croups)

  • 박인환;방영길;김경만;주혁종
    • 폴리머
    • /
    • 제27권4호
    • /
    • pp.330-339
    • /
    • 2003
  • 폴리(스티렌-co-디비닐벤젠) 수지 페닐고리의 클로로메틸화를 통해 메틸렌티올기를 도입한 수지 (I), 폴리(스티렌-co-메틸 메타아크릴레이트-co-디비닐벤젠) 공중합체의 페닐고리와 에스터기에 클로로메틸화 반응을 거쳐 각각 메틸렌티올기를 도입하여 중금속 이온들과의 배위결합에 필요한공간개념을 배려한 수지(II) 및 폴리(스티렌-co-디비닐벤젠) 수지의 페닐고리를 클로로설폰화한 후, 소디움하이드로술파이드로 티오설폰산화한 수지 (III) 등 3가지 종류의 티올계 구상형 수지들을 합성하였다. 이어, 이들 킬레이트 수지들에 대한 중금속 이온의 흡착경향을 평가한 결과, 티올기 함유 I형 킬레이트 수지는 Hg$^{2+}$에 대해서만 선택적 흡착성을 보였고, 티올기 함유 II형 킬레이트 수지는 Hg$^{2+}$에 대한 흡착성능이 보다 향상되었으며, Cu$^{2+}$, Pb$^{2+}$, C$d^{2+}$ 및 Cr$^{3+}$ 등의 몇몇 중금속 이온들에 대해서도 약간의 흡착능을 보였다. 다른 한편으로, 친수성의 티오설폰산기 함유 III형 킬레이트 수지는 효율적 흡착체로서 Hg$^{2+}$, Cu$^{2+}$, Ni$^{2+}$, Co$^{2+}$ 및 Cr$^{3+}$ 등의 중금속 이온들은 물론, 특히 C$d^{2+}$ 및 Pb$^{2+}$에 높은 흡착능을 보였다.

Benzimidazole을 함유한 [1,2,4]-Triazole 유도체의 합성 및 생물학적 활성 (Synthesis of [1,2,4]-Triazole Derivatives Containing Benzimidazole and Biological Activities)

  • 이소하;전제호;임혜원;배애님
    • 한국응용과학기술학회지
    • /
    • 제23권4호
    • /
    • pp.355-361
    • /
    • 2006
  • [1,2,4]-Triazole derivatives were synthesized by 5 steps. Benzimidazole was refluxed with ethyl chloroacetate to give 1H-benzimidazole-acetic acid ethyl ester (1) over 52% yield. Ester (1) was refluxed with hydrazine hydrate in the presence of ethanol to afford 1H-benzimidazole-1-acetic acid, hydrazide (2). 5-Benzoimidazol-1-ylmethyl-4H-[1,2,4]triazole-3-thiol (4) was made via coupling of compound (2) with methyl isothiocyanate, followed by cyclization of 1H-benzimidazole-1-acetic acid, 2-[(methylamino) thioxomethyl]hydrazide (3) on reflux, and finally the target compounds (6a-6v) were synthesized by general substitution reaction. Compounds (6a-6v) were screened for T-type calcium channel blocker using the fluorescence assay by FDSS6000. All compounds (6a-6v) did not show better activities than control compound, mibefradil.

Aminolysis of S-4-Nitrophenyl X-Substituted Thiobenzoates: Effect of Nonleaving-Group Substituents on Reactivity and Mechanism

  • Im, Li-Ra;Jeon, Sang-Eun;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권4호
    • /
    • pp.1153-1157
    • /
    • 2011
  • A kinetic study is reported for aminolysis of S-4-nitrophenyl X-substituted thiobenzoates 3a-g in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. Thiol esters 3a-g are 7.8-47.6 fold more reactive than the corresponding oxygen esters (i.e., 4-nitrophenyl X-substituted benzoates 1a-g). Such reactivity order appears to be in accordance with the expectation that 4-nitrothiophenoxide in 3a-g is a better nucleofuge than 4-nitrophenoxide in 1a-g since the former is 2.64 pKa units less basic than the latter. Hammett plot for the reactions of 3a-g exhibit poor correlation coefficients ($R^2$ = 0.977-0.986) with negative deviation by substrates possessing an electrondonating group (EDG), while the Yukawa-Tsuno plots result in excellent linear correlation ($R^2$ = 0.995-0.997) with ${\rho}$ = 0.93-1.23 and r = 0.57-0.67, indicating that the negative deviation shown by substrates possessing an EDG is caused by ground-state stabilization through resonance interactions but not due to a change in ratedetermining step upon changing the nonleaving-group substituent X. The ${\rho}$ value increases as the incoming amine becomes more basic and more reactive, indicating that the RSP is not operative in the current reactions.

Dipeptidyl Carboxypeptidases에 의한 S-Hippuryl Thioglycolyl Glycine의 가수분해 (S-Hippuryl Thioglycolyl Glycine : A New Chromogenic Substrate for Dipeptidyl Carboxypeptidases)

  • 이현재
    • 대한화학회지
    • /
    • 제19권4호
    • /
    • pp.246-251
    • /
    • 1975
  • Dideptidyl carboxypeptidases와 angiotenisn-coverting enzyme의 새로운 기질불질로서 thiol ester 인 S-Hippuryl thioglycolyl glycine을 합성하였으며, 이 기질에 의한 간편하고도 예민한 효소 활성도의 정량방법을 제시하였다. 이 경우 효소반응 생성물인 thioglycolyl glycine은 반응계중에 첨가한 5,5-dithio-bis-(2-nitrobenzoic acid), DTNB와 쉽게 반응하여 410nm에서 강한 흡광스펙트럼을 갖는 5-thio-2-nitrobenzoic acid(${\varepsilon}M=1.36{\times}10^4$)을 형성함으로서 효소의 새로운 미량정량 방법으로 이용 가치가 크다고 본다.

  • PDF

Bio-functionalized Gold Nanoparticles for Surface-Plasmon- Absorption-Based Protein Detection

  • Kim, Wan-Joong;Choi, Soo-Hee;Rho, Young-S.;Yoo, Dong-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권12호
    • /
    • pp.4171-4175
    • /
    • 2011
  • Bio-functionalized gold nanoparticles (AuNPs), which bio-specifically interact with biotin-(strept)avidin, were investigated in this study. AuNPs were functionalized with a synthetically-provided biotin-linked thiol (BLT), which was synthesized by amidation of the active ester of biotin with 2-mercaptoethylamine. The BLT-attached AuNP was bio-specific for streptavidin, making it potentially useful for biosensor applications. To test the bio-specific interactions, the colors, absorption spectra and TEM images were investigated for proteins such as streptavidin, cytochrome C, myoglobin and hemoglobin. The colors and absorption spectra changed when streptavidin was added to the BLT-attached AuNP solution. However, the color and spectra did not change when the other proteins were added to the same solution. These results show that the AuNPs provided a colloidal solution with excellent stability and highly selective absorption characteristics for streptavidin as a target molecule. Proteins were also screened in order to identify a general strategy for the use of optical biosensing proteins based on AuNPs. In addition, TEM images confirmed that streptavidin led the BLT-attached AuNPs to aggregate or precipitate.

Carbon monoxide activates large-conductance calcium-activated potassium channels of human cardiac fibroblasts through various mechanisms

  • Bae, Hyemi;Kim, Taeho;Lim, Inja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권3호
    • /
    • pp.227-237
    • /
    • 2021
  • Carbon monoxide (CO) is a cardioprotectant and potential cardiovascular therapeutic agent. Human cardiac fibroblasts (HCFs) are important determinants of myocardial structure and function. Large-conductance Ca2+-activated K+ (BK) channel is a potential therapeutic target for cardiovascular disease. We investigated whether CO modulates BK channels and the signaling pathways in HCFs using whole-cell mode patch-clamp recordings. CO-releasing molecules (CORMs; CORM-2 and CORM-3) significantly increased the amplitudes of BK currents (IBK). The CO-induced stimulating effects on IBK were blocked by pre-treatment with specific nitric oxide synthase (NOS) blockers (L-NG-monomethyl arginine citrate and L-NG-nitroarginine methyl ester). 8-bromo-cyclic GMP increased IBK. KT5823 (inhibits PKG) or ODQ (inhibits soluble guanylate cyclase) blocked the CO-stimulating effect on IBK. Moreover, 8-bromo-cyclic AMP also increased IBK, and pre-treatment with KT5720 (inhibits PKA) or SQ22536 (inhibits adenylate cyclase) blocked the CO effect. Pre-treatment with N-ethylmaleimide (a thiol-alkylating reagent) also blocked the CO effect on IBK, and DL-dithiothreitol (a reducing agent) reversed the CO effect. These data suggest that CO activates IBK through NO via the NOS and through the PKG, PKA, and S-nitrosylation pathways.

Effect of fermented blueberry on the oxidative stability and volatile molecule profiles of emulsion-type sausage during refrigerated storage

  • Zhou, Hengyue;Zhuang, Xinbo;Zhou, Changyu;Ding, Daming;Li, Chunbao;Bai, Yun;Zhou, Guanghong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권5호
    • /
    • pp.812-824
    • /
    • 2020
  • Objective: The aim of this work was to assess the effect of fermented blueberry (FB; 2%, 4%, and 6%) on the oxidative stability and volatile molecule profiles of emulsion-type sausage stored at 4℃ for 28 days. Methods: The antioxidant activity of FB was determined through radical-scavenging activity against 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radicals. Four formulations of sausage treatments with different FB levels (0%, 2%, 4%, 6%) were prepared, then peroxide value (POVs), thiobarbituric acid-reactive substances (TBARS) values, protein carbonyls and thiol groups were measured. The aroma profiles of sausages for each treatment was also determined. Results: The half maximal inhibitory concentration indicated that FB had greater scavenging ability than ascorbic acid against DPPH and hydroxyl radicals. Sausages with FB significantly retarded increases in POVs and TBARS, as well as in the content of protein carbonyls during all storage days (p<0.05). Particularly, 4% and 6% FB-treated sausages had better oxidation inhibition effects. However, FB accelerated the reduction in thiol groups (p<0.05). Additionally, FB inhibits the excessive formation of aldehyde compounds; for example, hexanal, which may cause rancid flavors, decreased from 58.25% to 19.41%. FB also created 6 alcohols (i.e., 2-methyl-1-propanol, 3-methyl-1-butanol, and phenylethyl alcohol), 5 ester compounds (i.e., ethyl acetate, ethyl lactate, and ethyl hexanoate) and 3-hydroxy-2-butanone in the sausages that contribute to sausage flavors. The principal component analysis showed that the aroma profiles of sausages with and without FB are easily identified. Conclusion: The addition of FB could significantly reduce the lipid and protein oxidation and improve oxidative stability for storage. Also, adding FB could inhibit rancid flavors and contribute to sausage flavors.

Biocidal Activity of Metal Nanoparticles Synthesized by Fusarium solani against Multidrug-Resistant Bacteria and Mycotoxigenic Fungi

  • Sayed, Manal T. El;El-Sayed, Ashraf S.A.
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권2호
    • /
    • pp.226-236
    • /
    • 2020
  • Antibiotic resistance by pathogenic bacteria and fungi is one of the most serious global public health problems in the 21st century, directly affecting human health and lifestyle. Pseudomonas aeruginosa and Staphylococcus aureus with strong resistance to the common antibiotics have been isolated from Intensive Care Unit patients at Zagazig Hospital. Thus, in this study we assessed the biocidal activity of nanoparticles of silver, copper and zinc synthesized by Fusarium solani KJ 623702 against these multidrug resistant-bacteria. The synthesized Metal Nano-particles (MNPs) were characterized by UV-Vis spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and Zeta potential. The Fourier transform infrared spectroscopy (FTIR) result showed the presence of different functional groups such as carboxyl, amino and thiol, ester and peptide bonds in addition to glycosidic bonds that might stabilize the dispersity of MNPs from aggregation. The antimicrobial potential of MNPs by F. solani against the multidrug-resistant (MDR) P. aeruginosa and S. aureus in addition to the mycotoxigenic Aspergillus awamori, A. fumigatus and F. oxysporum was investigated, based on the visual growth by diameter of inhibition zone. Among the synthesized MNPs, the spherical AgNPs (13.70 nm) displayed significant effect against P. aeruginosa (Zone of Inhibition 22.4 mm and Minimum Inhibitory Concentration 21.33 ㎍/ml), while ZINC oxide Nano-Particles were the most effective against F. oxysporum (ZOI, 18.5 mm and MIC 24.7 ㎍/ml). Transmission Electron Microscope micrographs of AgNP-treated P. aeruginosa showed cracks and pits in the cell wall, with internalization of NPs. Production of pyocyanin pigment was significantly inhibited by AgNPs in a concentration-dependent manner, and at 5-20 ㎍ of AgNPs/ml, the pigment production was reduced by about 15-100%, respectively.

Effect of Hydroalcoholic Extract of Ribes khorasanicum on Acute Hypertension Induced by L-NAME in Rat

  • Hamounpeima, Ismael;Hosseini, Mahmoud;Mohebbati, Reza;Shafei, Mohammad Naser
    • 대한약침학회지
    • /
    • 제22권3호
    • /
    • pp.160-165
    • /
    • 2019
  • Objectives: The aim of this study was to evaluate the effect of Ribes khorasanicum (R. khorasanicum); a plant growing in north Khorasan of Iran; on cardiovascular and stress oxidative in acute hypertension induced by N-nitro-l-arginine methyl ester (L-NAME), anitric oxide synthase inhibitor. Methods: Rats were divided into Control, L-NAME (10 mg/kg), Sodium Nitroprusside (SNP) (50 mg/kg) + L-NAME and three treated groups with R. khorasanicum (4, 12 and 24 mg/kg) groups + L-NAME. L-NAME and SNP were injected intravenously and extract intraperitoneal. In R. khorasanicum groups, L-NAME was injected 30 min after injection of the extract. Systolic blood pressure (SBP), mean arterial pressure (MAP) and heart rate (HR) were recorded continuously using power lab software. At the end of study oxidative stress parameters including of total thiol content (SH), malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) in heart and aorta of all groups were also measured. Results: In groups 4 and 24 mg/kg extract +L-NAME, there was a non-significant decrease in SBP and MAP compared to L-NAME group but dose 12 mg/kg significantly attenuate the effect of L-NAME(P < 0.05). In L-NAME group the heart and aorta tissues antioxidant enzymes levels decreased, while in treated rats these enzymes significantly increased. Conclusion: The extract of R. khorasanicum in dose 12 mg/kg show anti-hypertensive effect that is mediated by an effect on NO system or antioxidant parameters.

Carbon monoxide activation of delayed rectifier potassium currents of human cardiac fibroblasts through diverse pathways

  • Bae, Hyemi;Kim, Taeho;Lim, Inja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권1호
    • /
    • pp.25-36
    • /
    • 2022
  • To identify the effect and mechanism of carbon monoxide (CO) on delayed rectifier K+ currents (IK) of human cardiac fibroblasts (HCFs), we used the wholecell mode patch-clamp technique. Application of CO delivered by carbon monoxidereleasing molecule-3 (CORM3) increased the amplitude of outward K+ currents, and diphenyl phosphine oxide-1 (a specific IK blocker) inhibited the currents. CORM3-induced augmentation was blocked by pretreatment with nitric oxide synthase blockers (L-NG-monomethyl arginine citrate and L-NG-nitro arginine methyl ester). Pretreatment with KT5823 (a protein kinas G blocker), 1H-[1,-2,-4] oxadiazolo-[4,-3-a] quinoxalin-1-on (ODQ, a soluble guanylate cyclase blocker), KT5720 (a protein kinase A blocker), and SQ22536 (an adenylate cyclase blocker) blocked the CORM3 stimulating effect on IK. In addition, pretreatment with SB239063 (a p38 mitogen-activated protein kinase [MAPK] blocker) and PD98059 (a p44/42 MAPK blocker) also blocked the CORM3's effect on the currents. When testing the involvement of S-nitrosylation, pretreatment of N-ethylmaleimide (a thiol-alkylating reagent) blocked CO-induced IK activation and DL-dithiothreitol (a reducing agent) reversed this effect. Pretreatment with 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)-21H,23H porphyrin manganese (III) pentachloride and manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (superoxide dismutase mimetics), diphenyleneiodonium chloride (an NADPH oxidase blocker), or allopurinol (a xanthine oxidase blocker) also inhibited CO-induced IK activation. These results suggest that CO enhances IK in HCFs through the nitric oxide, phosphorylation by protein kinase G, protein kinase A, and MAPK, S-nitrosylation and reduction/oxidation (redox) signaling pathways.