• Title/Summary/Keyword: Thin-walled

Search Result 703, Processing Time 0.021 seconds

Giant plunging ranula: a case report

  • Kim, Seong-Ha;Huh, Kyung-Hoe;An, Chang-Hyeon;Park, Jin-Woo;Yi, Won-Jin
    • Imaging Science in Dentistry
    • /
    • v.43 no.1
    • /
    • pp.55-58
    • /
    • 2013
  • A ranula is a bluish, transparent, and thin-walled swelling in the floor of the mouth. They originate from the extravasation and subsequent accumulation of saliva from the sublingual gland. Ranulas are usually limited to the sublingual space but they sometimes extend to the submandibular space and parapharyngeal space, which is defined as a plunging ranula. A 21-year-old woman presented with a complaint of a large swelling in the left submandibular region. On contrast-enhanced CT images, it dissected across the midline, and extended to the parapharyngeal space posteriorly and to the submandibular space inferiorly. Several septa and a fluid-fluid level within the lesion were also demonstrated. We diagnosed this lesion as a ranula rather than cystic hygroma due to the location of its center and its sublingual tail sign. As plunging ranula and cystic hygroma are managed with different surgical approaches, it is important to differentiate them radiologically.

Cavitary Lung Abscess Mistaken for Pneumothorax after Drainage of Pus (배농후 기흉으로 오인된 공동성 폐농양)

  • Hong, Bum-Kee;Chang, Jung-Hyun;Kim, Se-Kyu;Kim, Sung-Kyu;Lee, Won-Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.4
    • /
    • pp.449-453
    • /
    • 1993
  • A 64-year-old male was admitted due to abruptly developed, severe dyspnea via local clinic. He had been a heavy smoker and alcoholic for a long time. Chest PA showed huge haziness in right upper lung field. Sputum culture for bacteriology was positive for Klebsiella pneumoniae. Immediately, appropriate antibiotics were administered and artificial ventilation was started. On 40th hospital day, simple chest roentgenogram taken due to sudden aggravated dyspnea showed marked hyperlucency in right upper lung field, suggestive of rupture of abscess cavity and resultant pneumothorax. At that time, chest tube was inserted but air leakage from the chest tube persisted. Chest CT scan taken after chest tube insertion showed the tube inserted into a thin-walled cavity in the above lesion. on 84th hospital day, right upper lobectomy with decortication was performed. Pathologically, cavittary lung abscess was diagnosed on the findings of partial re-epithelialization of ciliated columnar epithelium with severe pulmonary vascular occlusion and extensive fibrous pleural adhesions.

  • PDF

A Study on the Geometrically Nonlinear Analysis of Shell Structures Using the Flexible Joints of Beam Structures (보구조물의 유연이음을 이용한 쉘구조물의 기하학적 비선형해석에 관한 연구)

  • 김성익;이창훈;민옥기
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.213-223
    • /
    • 1997
  • In the analysis of the behavior of a complex structure, it requires much time and cost to analyze its behavior by using shell elements at the early design concept. For the purpose of the decrease of time and cost, many researches have been performed with the intention to analyze its behavior through replacing a shell model by a simple beam model. In the present study, a method is proposed for determining a bending spring stiffness which means the flexibility for applying into the joints of the simple beam model. Geometrically nonlinear analysis is performed through the application of the determined flexibility into joints of the simple beam model. The nonlinear behavior of thin-walled tube shell structure can be described within a little error through the simple beam model with flexible joints.

  • PDF

Free Vibration Analysis of a 3-dimensional Cable-Stayed Bridge with the Unsymmetric Girder Cross-section (비대칭단면 주형을 갖는 3차원 사장교의 고유진동해석)

  • Kim, Chul Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.2
    • /
    • pp.15-26
    • /
    • 1991
  • The lateral forces such as the earthquake and wind my cause the torsion to be coupled with the lateral bending in the gider, the cross-section of wich has only one axis of symmetry. This induces additional stresses especially in cables arranged in double-planes. Since this effect cannot be considered by using the conventional frame elements, the stiffness and the mass matrices of the geometrically nonlinear thin-walled frame element are developed in this study to model the girder. The equivalent modulus of elasticity proposed by Ernst is used for the cable elements. Verification of the present theory is made through a numerical example. Then, the free vibration of a three dimensional cable-stayed bridge is analyzed to study the coupled flexural-torsional behavior.

  • PDF

An Approximate Solution for the Local Buckling Coefficient of Pultruded I-Shape Compression Members (펄트루젼 I형 단면 압축재의 국부좌굴계수 계산을 위한 근사식의 개발)

  • Joo H. J.;Jung J. H.;Lee S.;Yoon S. J.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.223-227
    • /
    • 2004
  • The pultruded structural shapes are usually composed of thin-walled plate elements. Because the composite material has relatively low elastic moduli, the design of pultruded compression members may not be governed by the material strength limit state but by the stability limit state such as the local buckling or the global buckling. Therefore, the stability limit state must be checked to design pultruded columns. In this research, the local buckling analysis of pultruded I-shape column was conducted for various composite materials using the closed-form solution. To establish the design guidelines for the local buckling of pultruded I-shape compression members, the simplified form of equation to find the local buckling coefficient of pultruded I-shape column was proposed as a function of mechanical properties and the width ratio of plate components using the results obtainde by the closed-form solution. In order to verify the validity of proposed solution, the results obtained by the proposed approximate solution were compared with those of the closed-form solution and the experimental results.

  • PDF

Behavior and design of perforated steel storage rack columns under axial compression

  • El Kadi, Bassel;Kiymaz, G.
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1259-1277
    • /
    • 2015
  • The present study is focused on the behavior and design of perforated steel storage rack columns under axial compression. These columns may exhibit different types of behavior and levels of strength owing to their peculiar features including their complex cross-section forms and perforations along the member. In the present codes of practice, the design of these columns is carried out using analytical formulas which are supported by experimental tests described in the relevant code document. Recently proposed analytical approaches are used to estimate the load carrying capacity of axially compressed steel storage rack columns. Experimental and numerical studies were carried out to verify the proposed approaches. The experimental study includes compression tests done on members of different lengths, but of the same cross-section. A comparison between the analytical and the experimental results is presented to identify the accuracy of the recently proposed analytical approaches. The proposed approach includes modifications in the Direct Strength Method to include the effects of perforations (the so-called reduced thickness approach). CUFSM and CUTWP software programs are used to calculate the elastic buckling parameters of the studied members. Results from experimental and analytical studies compared very well. This indicates the validity of the recently proposed approaches for predicting the ultimate strength of steel storage rack columns.

Stability analyses of a cylindrical steel silo with corrugated sheets and columns

  • Sondej, Mateusz;Iwicki, Piotr;Wojcik, Michal;Tejchman, Jacek
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.147-166
    • /
    • 2016
  • The paper presents comprehensive quasi-static stability analysis results for a real funnel-flow cylindrical steel silo composed of horizontally corrugated sheets strengthened by vertical thin-walled column profiles. Linear buckling and non-linear analyses with geometric and material non-linearity were carried out with a perfect and an imperfect silo by taking into account axisymmetric and non-axisymmetric loads imposed by a bulk solid following Eurocode 1. Finite element simulations were carried out with 3 different numerical models (single column on the elastic foundation, 3D silo model with the equivalent orthotropic shell and full 3D silo model with shell elements). Initial imperfections in the form of a first eigen-mode for different wall loads and from 'in-situ' measurements with horizontal different amplitudes were taken into account. The results were compared with Eurocode 3. Some recommendations for the silo dimensioning were elaborated.

Free vibration analysis of tapered FRP transmission poles with flexible joint by finite element method

  • Saboori, Behnam;Khalili, Seyed Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.42 no.3
    • /
    • pp.409-424
    • /
    • 2012
  • Since relatively low elasticity modulus of the FRP materials results in lower natural frequencies, it is necessary to study the free vibration of FRP transmission poles. In this paper, the free vibration of tapered FRP transmission poles with thin-walled circular cross-section is investigated by a tapered beam element. To model the flexible joints of the modular poles, a rotational spring model is used. Modal analysis is performed for typical FRP poles with/without joint and they are also modeled by ANSYS commercial finite element software. There is a good correlation between the results of the tapered beam finite element model and those obtained from ANSYS as well as the existing experimental results. The effects of different geometries, material lay-ups, concentrated masses at the pole tip, and joint flexibilities are evaluated. Moreover, it is concluded that using tougher fibres at the inner and outer layers of the cross-section, results in higher natural frequencies, significantly.

Static behavior of steel tubular structures considering local joint flexibility

  • Wang, Yamin;Shao, Yongbo;Cao, Yifang
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.425-439
    • /
    • 2017
  • As a thin-walled structure, local joint flexibility (LJF) in a tubular structure is prominent, and it may produce significant effect on the static performance for the overall structure. This study presents a simplified analytical model to analyze the static behavior for a steel tubular structure with LJF. The presented model simplifies a tubular structure into a frame model consisted of beam elements with considering the LJFs at the connections between any two elements. Theoretical equations of the simplified analytical model are deduced. Through comparison with 3-D finite element results of two typical planar tubular structures consisted of T- and Y-joints respectively, the presented method is proved to be accurate. Furthermore, the effect of LJF on the overall performance of the two tubular structures (including the deflection and the internal forces) is also investigated, and it is found from analyses of internal forces and deformation that a rigid connection assumption in a frame model by using beam elements in finite element analysis can provide unsafe and inaccurate estimation.

Vibration and Stability Control of Rotating Composite Shafts via Collocated Piezoelectic Sensing and Actuation (압전감지기 및 압전작동기를 이용한 복합재료 회전축의 진동 및 안전성 제어)

  • Jeong, Nam-Heui;Kang, Ho-Shik;Yoon, Il-Sung;Song, Oh-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.152-159
    • /
    • 2007
  • A study on the control of free vibration and stability characteristics of rotating hollow circular shafts subjected to compressive axial forces is presented in this paper. Both passive structural tailoring technique and active control scheme via collocated piezoelectric sensing and actuation are used in the study Gyroscopic and centrifugal forces combined with the compressive axial force contribute to the occurrence of divergence and flutter instabilities of the rotating shaft. The dual methodology based on the passive and active control schemes shows a high degree of efficiency toward postponement of these instabilities and expansion of the domain of stability of the system. The structural model of the shaft is based on an advanced thin-walled beam structure that includes the non-classical effects of transverse shear, anisotropy of constituent materials and rotatory inertia.