• 제목/요약/키워드: Thin-film technology

검색결과 2,954건 처리시간 0.049초

산소 가스 유량비에 따라 제작한 Al이 도핑된 ZnO 박막 (AI doped ZnO thin film deposited with $O_2$ gas flow rate)

  • 조범진;금민종;김경환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.67-68
    • /
    • 2006
  • We prepared the AZO thin film with different $O_2$ gas flow rate. the AZO thin films were deposited on glass substrate at room temperature, working gas pressure of 1mTorr. the electrical, structural and optical properties of AZO thin films were investigated by using Hall Effect measurement system, X-ray Diffractometer (XRD) and UV-VIS spectrometer. From the results, we could obtain that AZO thin film with low resistivity of $8.5{\times}10^{-4}{\Omega}cm$ was exhibited in specific $O_2$ gas flow rate. Also, the transmittance of over 80% in visible range was observed in specific $O_2$ gas flow rate. In all of the AZO thin film with the transmittance of over 80%, diffraction peak of (002) direction was observed, while amorphous peak was observed in the AZO thin film with the low transmittance.

  • PDF

HWCVD를 이용한 Amorphous Si 박막 증착공정에서 수소량에 따른 박막성장 특성 (Hydrogen-Dependent Catalytic Growth of Amorphous-Phase Silicon Thin-Films by Hot-Wire Chemical Vapor Deposition)

  • 박승일;지형용;김명준;김근주
    • Current Photovoltaic Research
    • /
    • 제1권1호
    • /
    • pp.27-32
    • /
    • 2013
  • We investigated the growth mechanism of amorphous-phase Si thin films in order to improve the film characteristics and circumvent photo-degradation effects by implementation of hot-wire chemical vapor deposition. Amorphous silicon thin films grown in a silane/hydrogen mixture can be decomposed by a resistive heat filament. The structural properties were observed by Raman spectroscopy, FTIR, SEM, and TEM. The electrical properties of the films were measured by photo-conductivity, dark-conductivity, and photo-sensitivity. The contents of Si-H and $Si-H_n$ bonds were measured to be 19.79 and 9.96% respectively, at a hydrogen flow rate of 5.5 sccm, respectively. The thin film has photo-sensitivity of $2.2{\times}10^5$ without a crystalline volume fraction. The catalyst behavior of the hot-wire to decompose the chemical precursors by an electron tunneling effect depends strongly on the hydrogen mixture rate and an amorphous Si thin film is formed from atomic relaxation.

Magnetisation reversal dynamics in epitaxial Fe/GaAs(001) and Fe/InAs(001) thin films

  • Lee, W. Y.;K. H. Shin;Kim, H. J.
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2000년도 International Symposium on Magnetics The 2000 Fall Conference
    • /
    • pp.230-238
    • /
    • 2000
  • We present the magnetisation reversal dynamics of epitaxial Fe thin films grown on GaAs(001) and InAs(001) studied as a function of field sweep rate in the range 0.01-160 kOe/s using magneto-optic Kerr effect (MOKE). For 55 and 250 ${\AA}$ Fe/GaAs(001), we find that the hysteresis loop area A follows the scaling relation A ∝ H$\^$${\alpha}$/ with ${\alpha}$=0.03∼0.05 at low sweep rates and 0.33-0.40 at high sweep rates. For the 150 ${\AA}$ Fe/InAs(001) film, ${\alpha}$ is found to be ∼0.02 at low sweep rates and ∼0.17 at high sweep rates. The differing values of ${\alpha}$ are attributed to a change of the magnetisation reversal process with increasing sweep rate. Domain wall motion dominates the magnetisation reversal at low sweep rates, but becomes less significant with increasing sweep rate. At high sweep rates, the variation of the dynamic coercivity H$\sub$c/ is attributed to domain nucleation dominating the reversal process. The results of magnetic relaxation studies for easy-axis reversal are consistent with the sweeping of one or more walls through the entire probed region (∼100 $\mu\textrm{m}$). Domain images obtained by scanning Kerr microscopy during the easy cubic axis reversal process reveal large area domains separated by zigzag walls.

  • PDF

Highly AC Voltage Fluctuation-Resistant LED Driver with Sinusoid-Like Reference

  • Ning, Ning;Tong, Zhenxiao;Yu, Dejun;Wu, Shuangyi;Chen, Wenbin;Feng, Chunyi
    • Journal of Power Electronics
    • /
    • 제14권2호
    • /
    • pp.257-264
    • /
    • 2014
  • A novel converter-free AC LED driver that is highly resistant to the fluctuation of AC voltage is proposed in this study. By removing large passive components, such as the bulky capacitor and the large-value inductor, the integration of the driver circuit is enhanced while the driving current remains stable. The proposed circuit provides LED lamps with a driving current that can follow the sinusoid waveform to obtain a very high power factor (PF) and low total harmonic distortion (THD). The LED input current produced by this driving current is insensitive to fluctuations in the AC voltage. Users will thus not feel that LED lamps are flashing during the fluctuation. Experiment results indicate that the proposed system can obtain PF of 0.999 and THD as low as 3.3% for a five-string 6 W LED load under 220 V at 50 Hz.

Fabrication of Graphene-based Flexible Devices Utilizing Soft Lithographic Patterning Method

  • Jung, Min Wook;Myung, Sung;Kim, Kiwoong;Jo, You-Young;Lee, Sun Suk;Lim, Jongsun;Park, Chong-Yun;An, Ki-Seok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.165-165
    • /
    • 2014
  • In this study, we demonstrated that the soft lithographic patterning processing of chemical vapor deposition (CVD) graphene and rGO sheets as large scale, low cost, high quality and simplicity for future industrial applications. Recently, a previous study has reported that single layer graphene grown via CVD was patterned and transferred to a target surface by controlling the surface energy of the polydimethylsiloxane (PDMS) stamp [1]. Using this approach, the surface of a relief-patterned elastomeric stamp was functionalized with hydrophilic dimethylsulfoxide (DMSO) molecules to enhance the surface energy of the stamp and to remove the graphene-based layer from the initial substrate and transfer it to a target surface [2]. Further, we developed a soft lithographic patterning process via surface energy modification for advanced graphene-based flexible devices such as transistors or simple and efficient chemical sensor consisting of reduced graphene oxide (rGO) and a metallic nanoparticle composite. A flexible graphene-based device on a biocompatible silk fibroin substrate, which is attachable to an arbitrary target surface, was also successfully fabricated.

  • PDF

Effects of Deposition Temperature and Annealing Process on PZT Thin Films Prepared by Pulsed Laser Deposition

  • Kim, Min-Chul;Choi, Ji-Won;Kang, Chong-Yun;Yoon, Seok-Jin;Kim, Hyun-Jai;Yoon, Ki-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제3권1호
    • /
    • pp.14-17
    • /
    • 2002
  • The effects of substrate temperatures and annealing temperatures on the microstructures and ferroelectric properties of PbZ $r_{0.52}$ $Ti_{0.48}$ $O_3$(PZT) thin fims prepared by pulsed laser deposition (PLD) were investigated. For this purpose, the PZT films were deposited at various substrate temperatures (400~$600^{\circ}C$) with post annealing process in oxygen atmosphere. The single perovskite phase was formed at the deposition temperature of 500 to 55$0^{\circ}C$ without post annealing and the PZT films deposited below 50$0^{\circ}C$ formed the single phase with post annealing at $650^{\circ}C$. The grain size of the films increased and the grain boundary of the films was clearly defined as the substrate temperature increased from 400 to 55$0^{\circ}C$. The remnant polarization (Pr) and the coercive field (Ec) of the films deposited at 55$0^{\circ}C$ and annealed at $650^{\circ}C$ were 34.3 $\mu$C/c $m^2$and 60.2 kV/cm, respectively.y.y.

Electrocaloric Effect in Pb0.865La0.09(Zr0.65Ti0.35)O3 Thin Film

  • Roh, Im-Jun;Kwon, Beomjin;Moon, Hi Gyu;Kim, Jin-Sang;Kang, Chong-Yun
    • 센서학회지
    • /
    • 제23권4호
    • /
    • pp.224-228
    • /
    • 2014
  • The electrocaloric effect of 9/65/35 PLZT thin film fabricated by the sol-gel method, which has not been studied yet, was investigated for its structural, electrical properties as well as temperature change property. The relaxor ferroelectric property of 9/65/35 PLZT thin film was confirmed by examining its dielectric and electrical properties. The relaxor property can cause a more pronounced electrocaloric effect (ECE) in a wider temperature range than normal ferroelectric film. To avoid errors caused by using an indirect measurement method, the leakage current generated by increasing temperatures was minimized by using the optimal maximum electric field ($350kVcm^{-1}$) in the thin film. The largest temperature change ${\delta}T$ (0.23 K) and the electrocaloric strength ${\xi}$ (0.68 mkcm/kV), calculated by equations were obtained. The maximum field change ${\delta}E$ ($191kVcm^{-1}$) was in the vicinity of the curie temperature ($200^{\circ}C$).

Permeation Properties of Composite Thin Film for Organic Based Electronic Devices

  • Kim, Kwang-Ho;Kim, Hoon;Lee, Joo-Won;Kim, Jai-Kyeong;Ju, Byeong-Kwon;Jang, Jin;Oh, Myung-Hwan;Han, Jeong-In
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.920-923
    • /
    • 2003
  • We fabricated composite materials as a pellet structure with the various kinds of inorganic material powder. The composite materials were deposited onto the plastic film by the electron beam evaporation and water vapor transmission rates (WVTRs) were measured by the MOCON facility. As a result of WVTRs, the composite materials had lower WVTR value than any other inorganic materials. So, these films were proposed to protect the organic light emitting device (OLED) from moisture and oxygen. We can consider that the composite thin-film is one of the more suitable candidates for the thin-film passivation layer in the OLED. And, we are processing the XRD, XPS and EPMA to analyze the property of the composite material. We will also analyze properties of the current-voltage and luminescence for lifetime both the composite thin-film passivated OLED and non-passivated OLED.

  • PDF

Novel deposition technology for nano-crystalline silicon thin film at low temperature by hyper-thermal neutral beam assisted CVD system

  • Jang, Jin-Nyoung;Song, Byoung-Chul;Oh, Kyoung-Suk;Yoo, Suk-Jae;Lee, Bon-Ju;Choi, Soung-Woong;Park, Young-Chun;Hong, Mun-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1025-1027
    • /
    • 2009
  • Novel low temperature deposition process for nano-crystalline Si thin film is developed with the hyper-thermal neutral beam (HNB) technology. By our HNB assisted CVD system, the reactive particles can induce crystalline phase in Si thin films and effectively combine with heating effect on substrate. At low deposition temperature under $80^{\circ}C$, the HNB with proper incident energy controlled by the reflector bias can effectively enhance the nano-crystalline formation in Si thin film without any additional process. The electrical properties of Si thin films can be varied from a-Si to nc-Si according to change of HNB energy and substrate temperature. Characterization of these thin films with conductivity reveal that crystalline of Si thin film can increase by assist of HNB with appropriate energy during low temperature deposition. And low temperature prcoessed nc-Si TFT performance has on-off ratio as order 5.

  • PDF

다양한 기판위에 증착된 BST 박막의 열처리 온도에 따른 마이크로파 유전성질과 미세구조 변화 (Microwave Properties and Microstructures of (Ba,Sr)TiO3 Thin Films on Various Substrates with Annealing Temperature)

  • 조광환;강종윤;윤석진;김현재
    • 한국재료학회지
    • /
    • 제17권7호
    • /
    • pp.386-389
    • /
    • 2007
  • The dielectric properties of $(Ba_{0.5}Sr_{0.5})TiO_3$ ferroelectric thin films have been investigated according to the substrates in order to optimize the their properties. MgO, r-plane sapphire, and poly-crystalline sapphire (Alumina) substrates have been used to deposite $(Ba_{0.5}Sr_{0.5})TiO_3$ ferroelectric thin films by RF magnetron sputtering. The BST thin films deposited on the single crystal (100)MgO substrates have high tunability and low dielectric loss. These results are caused by a low misfit between the lattice parameters of the BST films and the substrate. The BST films deposited on r-plane sapphire have relatively high misfit, and the tunability of 17% and dielectric loss of 0.0007. To improve the dielectric properties of the BST films, the post-annealing methods has been introduced. The BST films deposited on (100)MgO, (1102)r-plane sapphire, and poly-crystalline sapphire substrates have best properties in post-annealing conditions of $1050^{\circ}C$, $1100^{\circ}C$, and $1150^{\circ}C$, respectively. The different optimal post-annealing conditions have been found according to the different misfits between the films and substrates, and thermal expansion coefficients. Moreover, the films deposited on alumina substrate which is relatively cheap have a good tunability properties of 23% by the post-annealing.