DOI QR코드

DOI QR Code

Electrocaloric Effect in Pb0.865La0.09(Zr0.65Ti0.35)O3 Thin Film

  • Roh, Im-Jun (Electronic Materials Research Center, Korea Institute of Science and Technology) ;
  • Kwon, Beomjin (Electronic Materials Research Center, Korea Institute of Science and Technology) ;
  • Moon, Hi Gyu (Electronic Materials Research Center, Korea Institute of Science and Technology) ;
  • Kim, Jin-Sang (Electronic Materials Research Center, Korea Institute of Science and Technology) ;
  • Kang, Chong-Yun (Electronic Materials Research Center, Korea Institute of Science and Technology)
  • Received : 2014.05.12
  • Accepted : 2014.06.16
  • Published : 2014.07.31

Abstract

The electrocaloric effect of 9/65/35 PLZT thin film fabricated by the sol-gel method, which has not been studied yet, was investigated for its structural, electrical properties as well as temperature change property. The relaxor ferroelectric property of 9/65/35 PLZT thin film was confirmed by examining its dielectric and electrical properties. The relaxor property can cause a more pronounced electrocaloric effect (ECE) in a wider temperature range than normal ferroelectric film. To avoid errors caused by using an indirect measurement method, the leakage current generated by increasing temperatures was minimized by using the optimal maximum electric field ($350kVcm^{-1}$) in the thin film. The largest temperature change ${\delta}T$ (0.23 K) and the electrocaloric strength ${\xi}$ (0.68 mkcm/kV), calculated by equations were obtained. The maximum field change ${\delta}E$ ($191kVcm^{-1}$) was in the vicinity of the curie temperature ($200^{\circ}C$).

Keywords

References

  1. E. Defay, S. Crossley, S. K. Narayan, X. Moya, and N. D. Mathur, "The electrocaloric efficiency of ceramic and polymer films", Adv. Mater., Vol. 24, No. 6, pp. 3337-3342, 2013.
  2. M. Valant, "Electrocaloric materials for future solid-state refrigeration technologies", Prog. Mater. Sci., Vol. 57, pp. 980-1009, 2012. https://doi.org/10.1016/j.pmatsci.2012.02.001
  3. X. Hao and J. Zhai, "Electric-field tunable electrocaloric effects from phase transition between antiferroelectric and ferroelectric phase", Appl. Phys. Lett., Vol. 104, pp. 022902:1-022902:4, 2014.
  4. J. F. Scott, "Electrocaloric materials", Annu. Rev. Mater. Res., Vol. 41, pp. 229-240, 2011. https://doi.org/10.1146/annurev-matsci-062910-100341
  5. J. Hagberg, A. Uusimaki, and H. Jantunen "Electrocaloric characteristics in reactive sintered 0.87 Pb$(Mg_{1/3}Nb_{2/3})O_3-0.13 PbTiO_3$", Appl. Phys. Lett., Vol. 92, pp. 132909:1-132909:4, 2008.
  6. D. Saranya, A. R. Chaudhuri, J. parui, and S. B. Krupanidhi, "Electrocaloric effect of PMN-PT thin films near morphotropic phase boundary", Bull. Mat. Sci., Vol. 32, No. 3, pp. 259-262, 2009. https://doi.org/10.1007/s12034-009-0039-3
  7. A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore, and N. D. Mathur, "Giant electrocaloric effect in thin-film $PbZr_{0.95}Ti_{0.05}O_3$", Science, Vol. 311, pp. 1270-1271, 2006. https://doi.org/10.1126/science.1123811
  8. S. G. Lu, B. Rozic, Q. M. Zhang, Z. Kutnjak, X. Li, E. Furman, L. J. Gorny, M. Lin, B. Malic, M. Kosec, R. Blinc, and R. Pirc, "Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect", Appl. Phys. Lett, Vol. 97, pp. 162904:1-162904:3, 2010.
  9. L. Liu, K. Yu, Y. Liu, and J. Leng, "Polar elastic dielectric of large electrocaloric effect and deformation", Mech. Mater., Vol. 96, pp. 71-92, 2014.
  10. G. Casar, X. Li, Q. M. Zhang, and V. Bobnar, "Influencing dielectric properties of relaxor polymer system by blending vinylidene fluoride-trifluoroethylene-based terpolymer with a ferroelectric copolymer", Appl. Phys. Lett, Vol. 115, pp. 104101:1-104101:3, 2014.
  11. S. G. Lu and Q. Zhang, "Large electrocaloric effect in relaxor ferroelectrics", Journal of Advanced Dielectrics, Vol. 2, No. 3, pp. 1230011:1-1230011:15, 2012.
  12. A. S. Mischenko, Q. Zhang, R. W. Whatmore, J. F. Scott, and N. D. Mathur, "Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9 $(Mg_{1/3}Nb_{2/3})O_3-0.13 PbTiO_3$ near room temperature", Appl. Phys. Lett., Vol. 89, pp. 242912:1-242912:3, 2006.
  13. B. Neese, B. Chu, S. G. Lu, Y. Wang, E. Furman, and Q. M. Zhang, "Large electrocaloric effect in ferroelectric polymers near room temperature", Science, Vol. 321, pp. 821-823, 2008. https://doi.org/10.1126/science.1159655
  14. R. Selvamani, G. Singh, and V. S. Tiwari, "Electro-caloric effect in PLZT(8/65/35) ceramic", AIP Conf. Proc., Vol. 1447, pp. 1281-1282, 2012.
  15. H. Maiwa, "Pyroelectric and electrocaloric properties of PZT-and BT-based ceramics", Ferroelectrics, Vol. 450, pp. 84-92, 2013. https://doi.org/10.1080/00150193.2013.838497
  16. Y. He, X. M. Li, X. D. Gao, X. Leng, and W. Wang, "Enhanced electrocaloric properties of PMN-PT thin films with LSCO buffer layers", Funct. Mater. Lett., Vol. 4, No. 1 pp. 45-48, 2013.
  17. B. Neese, S. G. Lu, B. Chu, and Q. M. Zhang, "Electrocaloric effect of the relaxor ferroelectricpoly(vinylidenefluoridetrifluoroethylene-chlorofluoroethylene)terpolyme", Appl. phys. Lett., Vol. 94, pp. 042910:1-042910:3, 2009.

Cited by

  1. Indirect measurements of electrocaloric effect in ferroelectric thin films by positive-up-negative-down method vol.125, pp.6, 2017, https://doi.org/10.2109/jcersj2.16283
  2. Electrocaloric Effect of Low Temperature Sintering (Pb0.88La0.08)(Zr0.65Ti0.35)O3 Ceramics vol.28, pp.6, 2015, https://doi.org/10.4313/JKEM.2015.28.6.375