• Title/Summary/Keyword: Thin section

검색결과 591건 처리시간 0.023초

Free vibration of core wall structure coupled with connecting beams

  • Wang, Quanfeng
    • Structural Engineering and Mechanics
    • /
    • 제10권3호
    • /
    • pp.263-275
    • /
    • 2000
  • In this paper, a core wall structure coupled with connecting beams is discretized and modeled as an equivalent thin-walled member with closed section, while the connecting beams between openings are replaced by an equivalent shear diaphragm. Then, a numerical method (finite member element method, FMEM) for dynamic analysis of the core wall structure is proposed. The numerical method combines the advantages of the FMEM and Vlasov's thin-walled beam theory and the effects of torsion, warping and, especially, the shearing strains in the middle surface of the walls are considered. The results presented in this paper are very promising compared with the ones obtained from finite element method.

혼합법을 이용한 박벽 복합재료 보의 전단변형거동 해석 (Transverse Shear Behavior of Thin-Walled Composite Beams Using a Mixed Method)

  • 박일주;정성남
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.194-197
    • /
    • 2005
  • In this work, a mixed beam approach is performed to identify the transverse shear behavior of thin-walled composite beams with closed cross-sections. The analytical model includes the effects of elastic couplings, shell wall thickness, and torsion warping. The distributions of shear flow across the section as well as the shear correction coefficients are obtained in a closed form in the beam formulation. The influence of transverse shear deformation on the static behavior of closed cross-section composite beams is also investigated in the analysis

  • PDF

초기 비틀림각을 갖는 비균일 박판보 블레이드의 진동제어 (Vibration Control of Pretwisted Composite Thin-walled Rotating Beam with Non-uniform Cross Section)

  • 임성남;나성수
    • 한국소음진동공학회논문집
    • /
    • 제14권6호
    • /
    • pp.486-494
    • /
    • 2004
  • This paper addresses the dynamic modeling and closed-loop eigenvibration analysis of composite rotating pretwisted fan blade modeled as non-uniform thin-walled beam with bi-convex cross-section fixed at the certain presetting angle and incorporating piezoelectric induced damping capabilities. The blade model incorporates non-classical features such as transverse shear, rotary inertia and includes the centrifugal and Coriolis force field. A velocity feedback control law relating the piezoelectiriccally induced transversal bending moment at the beam tip with the appropriately selected kinematical response quantity is used and the beneficial effects upon the closed loop eigenvibration of the blade are highlighted.

비대칭 단면을 갖는 박벽 원형아치의 자유진동 해석 (Free Vibration Analysis of Thin-walled Circular Arch with Unsymmetric Section)

  • 김문영;민병철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.465-472
    • /
    • 1998
  • In this study, analytic solution and finite element formulation for the free vibration analysis of thin-walled circular arch, based on linearized virtual work and Vlasov's assumption, including restrained warping effect and second order terms of finite semitangential rotations, is presented. The total potential energy is derived by applying the Hellinger-Reissner principle. In this formulation, all displacement parameters of deformation are defined at the centroid axis. For the finite element formulation, the two node cubic Hermitian polynomials are utilized as shape functions. In special case, potential energy functional of thin-walled curved beam with monosymmetric cross section is derived. From this methodology, analytic solution for the free vibration of monosymmetric circular arch with simply supported is derived. In order to illustrate the accuracy of this study, various parameter studies for free vibration of circular arches are presented and compared with numerical solution analyzed by the FEM using straight beam element.

  • PDF

Exact dynamic stiffness matrix for a thin-walled beam-column of doubly asymmetric cross-section

  • Shirmohammadzade, A.;Rafezy, B.;Howson, W.P.
    • Structural Engineering and Mechanics
    • /
    • 제38권2호
    • /
    • pp.195-210
    • /
    • 2011
  • Bernoulli-Euler beam theory is used to develop an exact dynamic stiffness matrix for the flexural-torsional coupled motion of a three-dimensional, axially loaded, thin-walled beam of doubly asymmetric cross-section. This is achieved through solution of the differential equations governing the motion of the beam including warping stiffness. The uniform distribution of mass in the member is also accounted for exactly, thus necessitating the solution of a transcendental eigenvalue problem. This is accomplished using the Wittrick-Williams algorithm. Finally, examples are given to confirm the accuracy of the theory presented, together with an assessment of the effects of axial load and loading eccentricity.

두께가 얇은 단면을 갖는 보의 진동특성 (Vibration Characteristics of Thin-Walled Beams)

  • 오상진;이재영;모정만;박광규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.709-712
    • /
    • 2004
  • A study of the coupled flexural-torsional vibrations of thin-walled beams with monosymmetric cross-section is presented. The governing differential equations for free vibration of such beams are solved numerically to obtain natural frequencies and their corresponding mode shapes. The beam model is based on the Bernoulli-Euler beam theory and the effect of warping is taken into consideration. Numerical results are given for two specific examples of beams with free-free, clamped-free, hinged-hinged, clamped-hinged and clamped-clamped end constraints both including and excluding the effect of warping stiffness. The effect of warping stiffness on the natural frequencies and mode shapes is discussed and it is concluded that substantial error can be incurred if the effect is ignored.

  • PDF

차체구조용 박육부재의 단면형상변화에 따른 에너지흡수 특성 (Energy Absorbing Characteristics of Thin-Walled Members for Vehicles Having Various Section Shapes)

  • 차천석;정진오;이길성;백경윤;양인영
    • 한국정밀공학회지
    • /
    • 제20권10호
    • /
    • pp.177-182
    • /
    • 2003
  • The front-end side members of automobiles absorb most of the energy in a case of front-end collision. The front-end side members are required to have a high stiffness together with easiness to collapse sequentially to absorb more impact energy. The axial static collapse test (5mm/min) was conducted by using UTM for form different types of members which have different cross section shapes; single hat, single cap, double cap, and double hat. The single hat shaped section member has the typical standard section, which the double hat shape section has a symmetry in the center to have more stiffness. As a result of the test, the energy absorbing characteristic was analyzed for different section shapes. It turned out that the change of section shape influence the absorbing energy, the mean collapse load and the maximum collapse load, and the relation between the change of section shape and the collapse mode.

격자무늬를 갖는 에어포일의 단면 해석 및 워핑 모형 제작

  • 추현지;한희도;김남조
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.257-262
    • /
    • 2015
  • In this paper, the cross-section properties of thin-walled beam are calculated through KSec2D in consist of Saint-Venant theory. To investigate tendency increasing the thickness, we analysis cross-section using isotropic material. In the asymmetric cross-section, we investigate effect caused cross-section properties accompanied increasing the thickness. The structural properties such as bending stiffness, tosion stiffness per area of each cross-section in three cases is compared through increasing thickness. The warping displacement calculated by KSed2D is modeled by CATIA. In order to show that warping influence the cross-section, the warping shape modeled CATIA is printed 3D printer.

  • PDF

주열식공법 엄지말뚝을 위한 고강도 신형상 합성파일 (S-Pile)의 휨성능 평가 (Flexural Capacity Evaluation of High-strength New-shape Composite Pile (S-Pile) for the Soldier Pile in the C.I.P Method)

  • 이경구;김대희;주은희;김영기;김봉찬;이지훈
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.185-186
    • /
    • 2021
  • In Korea, many buildings are built with underground spaces and cast-in-place pile method is mostly applied in the temporary retaining walls for the underground space construction. A H-shaped steel section is generally embedded in the soldier pile in the C.I.P method. In this study, a new and economical section with high strength steel replacing the H-shaped section was proposed and its flexural capacity was evaluated experimentally. The new section is the concrete-filled composite section with pentagonal thin plate and thick flange plate. Test results showed that the proposed section has an excellent flexural strength and ductility.

  • PDF

Simulations of the hysteretic behavior of thin-wall cold-formed steel members under cyclic uniaxial loading

  • Dong, Jun;Wang, Shiqi;Lu, Xi
    • Structural Engineering and Mechanics
    • /
    • 제24권3호
    • /
    • pp.323-337
    • /
    • 2006
  • In this paper, the hysteretic behaviors of channel and C-section cold-formed steel members (CFSMs) under cyclic axial loading were simulated with the finite element method. Geometric and material nonlinearities, Bauschinger effect, strain hardening and strength improvement at corner zones were taken into account. Extensive numerical results indicated that, as the width-to-thickness ratio increases, local buckling occurs prematurely. As a result, the hysteretic behavior of the CFSMs degrades and their energy dissipation capability decreases. Due to the presence of lips, the hysteretic behavior of a C-section steel member is superior to that of its corresponding channel section. The intermediate stiffeners in a C-section steel member postpone the occurrence of local buckling and change its shapes, which can greatly improve its hysteretic behavior and energy dissipation capability. Therefore, the CFSMs with a large width-to-thickness ratio can be improved by adding lips and intermediate stiffeners, and can be used more extensively in residential buildings located in seismic areas.