• Title/Summary/Keyword: Thin porous wall

Search Result 15, Processing Time 0.021 seconds

Characteristics of Physical and Adsorption of Korean Traditional Charcoal (우리나라 전통 숯의 물리.화학적 특성)

  • Kim, Joon-Tae;Kim, Sun-Hwa;Kim, Hae-Jin
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.4 s.62
    • /
    • pp.77-86
    • /
    • 2006
  • The water purification was very important in Korea which has not sufficient water resource and while adsorption method among the various methods to eliminate the water pollutants has been widely used by activated carbon. This study was conducted the basic experiment for hall distribution, pH, conductivity, electronic microscope, cation exchange and inorganic materials the adsorption capacity of Korean traditional charcoal which has similar characteristics to activated carbon of organic pollutants. As a result of observing Korean traditional charcoal with electronic microscope, it was found that it has porous structure, oak charcoal has circular structure, pine charcoal has square structure and bamboo charcoal has hexagonal structure, which has high void fraction per unit area because of its thin cell wall structure. As a result of experimenting hall distribution, hall distribution of bamboo high temperature charcoal is high as 0.269cc/g and has the greatest inorganic contents and cation exchange capacity(CEC) which are the important factor of chemical adsorption.

A Control Volume Scheme for Three-Dimensional Transport: Buffer and Matrix Effects on a Decay Chain Transport in the Repository

  • Lee, Y.M.;Y.S. Hwang;Kim, S.G.;C.H. Kang
    • Nuclear Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.218-231
    • /
    • 2002
  • Using a three-dimensional numerical code, B3R developed for nuclide transport of an arbitrary length of decay chain in the buffer between the canister and adjacent rock in a high- level radioactive waste repository by adopting a finite difference method utilizing the control- volume scheme, some illustrative calculations have been done. A linear sorption isotherm, nuclide transport due to diffusion in the buffer and the rock matrix, and advection and dispersion along thin rigid parallel fractures existing in a saturated porous rock matrix as well as diffusion through the fracture wall into the matrix is assumed. In such kind of repository, buffer and rock matrix are known to be important physico-chemical harriers in nuclide retardation. To show effects of buffer and rock matrix on nuclide transport in HLW repository and also to demonstrate usefulness of B3R, several cases of breakthrough curves as well as three- dimensional plots of concentration isopleths associated with these two barriers are introduced for a typical case of decay chain of $^{234}$ Ulongrightarrow$^{230}$ Thlongrightarrow$^{226}$ Ra, which is the most important chain as far as the human environment is concerned.

NO Gas Sensing Properties of ZnO-SWCNT Composites (산화아연-단일벽탄소나노튜브복합체의 일산화질소 감지 특성)

  • Jang, Dong-Mi;Ahn, Se-Yong;Jung, Hyuck;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.623-627
    • /
    • 2010
  • Semiconducting metal oxides have been frequently used as gas sensing materials. While zinc oxide is a popular material for such applications, structures such as nanowires, nanorods and nanotubes, due to their large surface area, are natural candidates for use as gas sensors of higher sensitivity. The compound ZnO has been studied, due to its chemical and thermal stability, for use as an n-type semiconducting gas sensor. ZnO has a large exciton binding energy and a large bandgap energy at room temperature. Also, ZnO is sensitive to toxic and combustible gases. The NO gas properties of zinc oxide-single wall carbon nanotube (ZnO-SWCNT) composites were investigated. Fabrication includes the deposition of porous SWCNTs on thermally oxidized $SiO_2$ substrates followed by sputter deposition of Zn and thermal oxidation at $400^{\circ}C$ in oxygen. The Zn films were controlled to 50 nm thicknesses. The effects of microstructure and gas sensing properties were studied for process optimization through comparison of ZnO-SWCNT composites with ZnO film. The basic sensor response behavior to 10 ppm NO gas were checked at different operation temperatures in the range of $150-300^{\circ}C$. The highest sensor responses were observed at $300^{\circ}C$ in ZnO film and $250^{\circ}C$ in ZnO-SWCNT composites. The ZnO-SWCNT composite sensor showed a sensor response (~1300%) five times higher than that of pure ZnO thin film sensors at an operation temperature of $250^{\circ}C$.

Condensable Gas Separation using Phenol! Alumina Composite Activated Carbon Hollow Fiber Membranes (페놀수지/알루미나 복합 활성탄소중공사막을 이용한 응축성 기체 분리)

  • Shin, Kyung-Yong;Park, You-In;Kim, Beom-Sik;Koo, Kee-Kahb
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.312-319
    • /
    • 2010
  • Carbon membrane materials have received considerable attention for the gas separation including hydrocarbon mixture of ingredients of the volatile organic compounds(VOCs) because they possess their higher selectivity, permeability, and thermal stability than the polymeric membranes. The use of activated carbon membranes makes it possible to separate continuously the VOCs mixture by the selective adsorption-diffusion mechanism which the condensable components are preferentially adsorbed in to the micropores of the membrane. The activated carbon hollow fiber membranes with uniform adsorptive micropores on the wall of open pores and the surface of the membranes have been fabricated by the carbonization of a thin film of phenolic resin deposited on porous alumina hollow fiber membrane. Oxidation, carbonization, and activation processing variables were controlled under different conditions in order to improve the separation characteristics of the activated carbon membrane. Properties of activated carbon hollow fiber membranes and the characterization of a gas permeation by pyrolysis conditions were studied. As the result, the activated carbon hollow fiber membranes with good separation capabilities by the molecular size mechanism as well as selective adsorption on the pores surface followed by surface diffusion effective in the recovery hydrocarbons have been obtained. Therefore, these activated carbon membranes prepared in this study are shown as promising candidate membrane for separation of VOCs.

DEVELOPMENT OF MICROPOROUS CALCIUM PHOSPHATE COATED NERVE CONDUIT FOR PERIPHERAL NERVE REPAIR (말초신경 재건을 위한 인회석 박막 코팅 미세공성 신경재생관(nerve conduit)의 개발)

  • Lee, Jong-Ho;Hwang, Soon-Jeong;Choi, Won-Jae;Kim, Soung-Min;Kim, Nam-Yeol;Lee, Eun-Jin;Ahn, Kang-Min;Myung, Hoon;Seo, Byoung-Moo;Choi, Jin-Young;Choung, Pill-Hoon;Kim, Myung-Jin;Kim, Hyun-Man
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.3
    • /
    • pp.151-156
    • /
    • 2003
  • This study was performed to develop a useful nerve conduit which provides favorable environment for Schwann cell viability and proliferation. Milipore membrane of $0.45{\mu}m$ pore size was selected because it permits nutritional inflow from the outside of the conduit and prevents from invading the fibrotic tissue into the conduit. The membrane was rolled and sealed to form a conduit of 2mm diameter and 20mm length. To improve the axonal regeneration and to render better environment for endogenous and exogenous Schwann cell behaviour, the microgeometry and surface of conduit was modified by coating with thin film of calcium phosphate. Cellular viability within the conduit and attachment to its wall were assessed with MTT assay and SEM study. Milipore filter conduit showed significantly higher rate of Schwann cell attachment and viability than the culture dish. However, the reverse was true in case of fibroblast. Coating with thin film of low crystalline calcium phosphate made more favorable environment for both cells with minimal change of pore size. These findings means the porous calcium phosphate coated milipore nerve conduit can provide much favorable environment for endogenous Schwann cell proliferation and exogenous ones, which are filled within the conduit for the more advanced strategy of peripheral nerve regeneration, with potential of reducing fibrotic tissue production.