• 제목/요약/키워드: Thin p-layer

검색결과 776건 처리시간 0.026초

Amperornetric Determination of Ascorbic Acia at a Thin Layer Flow Cell

  • Hahn, Young-Hee
    • Archives of Pharmacal Research
    • /
    • 제11권1호
    • /
    • pp.56-60
    • /
    • 1988
  • A thin layer flow cell with cell volume of $8\;{\mu}{\ell}$ was constructed. Diffusion currents of ascorbic acid was directly proportional to the 1/3 power of volume flow rates. A linear dynamic range was obtained at the concentration range between $10^{-7}\;M\;and\;10^{-4}\;M$ of ascorbic acid with a detection limit of $10^{-8}\;M$. Ascorbic acid in the multivitamin product was amperometrically determined at TLFC after simply dissolving mg range ground product in $100m{\ell}$ of pH 7.0 phosphate buffer.

  • PDF

Prevention of P-i Interface Contamination Using In-situ Plasma Process in Single-chamber VHF-PECVD Process for a-Si:H Solar Cells

  • Han, Seung-Hee;Jeon, Jun-Hong;Choi, Jin-Young;Park, Won-Woong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.204-205
    • /
    • 2011
  • In thin film silicon solar cells, p-i-n structure is adopted instead of p/n junction structure as in wafer-based Si solar cells. PECVD is a most widely used thin film deposition process for a-Si:H or ${\mu}c$-Si:H solar cells. For best performance of thin film silicon solar cell, the dopant profiles at p/i and i/n interfaces need to be as sharp as possible. The sharpness of dopant profiles can easily achieved when using multi-chamber PECVD equipment, in which each layer is deposited in separate chamber. However, in a single-chamber PECVD system, doped and intrinsic layers are deposited in one plasma chamber, which inevitably impedes sharp dopant profiles at the interfaces due to the contamination from previous deposition process. The cross-contamination between layers is a serious drawback of a single-chamber PECVD system in spite of the advantage of lower initial investment cost for the equipment. In order to resolve the cross-contamination problem in single-chamber PECVD systems, flushing method of the chamber with NH3 gas or water vapor after doped layer deposition process has been used. In this study, a new plasma process to solve the cross-contamination problem in a single-chamber PECVD system was suggested. A single-chamber VHF-PECVD system was used for superstrate type p-i-n a-Si:H solar cell manufacturing on Asahi-type U FTO glass. A 80 MHz and 20 watts of pulsed RF power was applied to the parallel plate RF cathode at the frequency of 10 kHz and 80% duty ratio. A mixture gas of Ar, H2 and SiH4 was used for i-layer deposition and the deposition pressure was 0.4 Torr. For p and n layer deposition, B2H6 and PH3 was used as doping gas, respectively. The deposition temperature was $250^{\circ}C$ and the total p-i-n layer thickness was about $3500{\AA}$. In order to remove the deposited B inside of the vacuum chamber during p-layer deposition, a high pulsed RF power of about 80 W was applied right after p-layer deposition without SiH4 gas, which is followed by i-layer and n-layer deposition. Finally, Ag was deposited as top electrode. The best initial solar cell efficiency of 9.5 % for test cell area of 0.2 $cm^2$ could be achieved by applying the in-situ plasma cleaning method. The dependence on RF power and treatment time was investigated along with the SIMS analysis of the p-i interface for boron profiles.

  • PDF

P3HT와 PVK 블렌드 막에서의 전계 발광 특성 (Electroluminescence Properties from Blend films of poly(3-hexylthiophene) and poly(N-vinylcarvazole))

  • 김대중;김상기;구할본;정운조;박계춘
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집 Vol.3 No.2
    • /
    • pp.972-975
    • /
    • 2002
  • Electroluminescence(EL) devices based on organic thin layers have attracted lot of interests because of their application as display. One of the problems is red material. It offered a short life and poor emission efficiency to boot. In this study, this problem can be solved by using a multi-layer device structure. Organic electroluminescent devices which are composed of organic thin multi-layer films are fabricated. The basic structure is ITO / Emitting layer / LiP / Al EL device in which Hole transport/Electron blocking PVK layer was blending. We demonstrate the enhancement of eletroluminescence (EL) from blends of poly(3-hexylthiophene) in poly(N-vinylcarvazole). The emitting layer is consisted of a host material(PVK) and a guest emitting material(P3HT). It was showed higher EL intensity and their electro-optical properties were investigated.

  • PDF

Fabrication of Conducting Polymer Thin Films Using Molecular Layer Deposition

  • 한규석;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.289-289
    • /
    • 2011
  • The conducting polymer thin films were deposited using the gas phase method which known as molecular layer deposition (MLD). Terephthalaldehyde (TPA) and p-phenylenediamine (PD) were used as monomers to deposit conducting polymer. Self-terminating nature of TPA and PD reaction were demonstrated by growth rate saturation versus precursors dosing time. Infrared spectroscopic and X-ray photoelectron spectroscopy were employed to determine the chemical composition and state of conducting polymer thin films. Layer by layer growth and polymerization of thin films can be showed by shifting of absorption edge using UV-VIS spectroscopy. This conducting polymer fabricated by using MLD method gives the opportunity to develop new hybrid materials by combining inorganic materials in nanoscale.

  • PDF

Thin Film Solar Cell Simulation of A Function of P Buffer Layer Bandgap

  • 김세준;최형욱;이영석;이준신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.60-60
    • /
    • 2009
  • 기존의 박막 실리콘 태양전지는 TCO와 p-layer 사이의 Bandgap차이가 p-layer, i-layer, n-layer 사이의 Bandgap 차이보다 커서 TCO를 통과한 태양광이 p-layer에 흡수되기 전에 일정량 손실된다. 이를 해결하기 위하여, p-layer 위에 기존의 p-layer보다 높은 Bandgap을 갖는 p buffer layer가 추가된 박막 실리콘 태양전지 구조를 만들어서 흡수되는 태양광의 손실량을 줄이고, 변환효율을 높이고자 하였다. 실험은 ASA Simulator를 이용하여 진행하였으며, Simulation결과 1.92eV의 Bandgap을 갖는 p buffer layer의 추가로 인하여, 기존 10.64%에서 11.16%로 증가된 변환효율을 얻을 수 있었다. Bandgap뿐만 아니라 다른 요소의 최적화도 이루어진다면, 기존의 박막 실리콘 태양전지보다 훨씬 높은 변환효율을 갖는 박막 실리콘 태양전지를 설계 하는 것이 가능 할 것이다.

  • PDF

MMIC에 적용되는 MIM 커패시터의 실리콘 질화막 증착과 전기적 특성 (Deposition and Electrical Properties of Silicon Nitride Thin Film MIM Capacitors for MMIC Applications)

  • 성호근;소순진;박춘배
    • 한국전기전자재료학회논문지
    • /
    • 제17권3호
    • /
    • pp.283-288
    • /
    • 2004
  • We have fabricated MIM capacitors for MMIC applications, with capacitances as high as 600pF/$\textrm{mm}^2$ and excellent electrical properties of the insulator layer. Silicon nitride thin film is the desirable material for MMIC capacitor fabrication. Standard MIM capacitance in MMIC is 300pF/$\textrm{mm}^2$ with an insulator layer thickness of more than 2000$\AA$. However, capacitors with thin insulator layers have breakdown voltages as low as 20V. We have deposited insulator layers by PECVD in our MIM structure with an air bridge between the top metal and the contact pad. The PECVD process was optimized for fabricating the desired capacitors to be used in MMIC. Silicon nitride(Si$_{x}$N$_{y}$) thin films of about 1000$\AA$ thick show capacitances of about 600pF/$\textrm{mm}^2$, and breakdown voltages above 70V at 100nA.A.A.

PL Property of Al-N Codoped p-type ZnO Thin Films Fabricated by DC Magnetron Sputtering

  • Liu, Yan-Yan;Jin, Hu-Jie;Park, Choon-Bae;Hoang, Geun-C.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권3호
    • /
    • pp.89-92
    • /
    • 2009
  • High-quality Al-N doped p-type ZnO thin films were deposited on Si and buffer layer/Si by DC magnetron sputtering in a mixture of $N_2$ and $O_2$ gas. The target was ceramic ZnO mixed with $Al_2O_3$ (2 wt%). The p-type ZnO thin films showed a carrier concentration in the range of $1.5{\times}10^{15}{\sim}2.93{\times}10^{17}\;cm^{-3}$, resistivity in the range of 131.2${\sim}$2.864 ${\Omega}cm$, mobility in the range of 3.99${\sim}$31.6 $cm^2V^{-1}s^{-l}$, respectively. It was easier to dope p-type ZnO films on Si substrates than on buffer layer/Si. The film grown on Si showed the highest quality of photoluminescence (PL) characteristics. The Al donor energy level depth $(E_d)$ of Al-N codoped ZnO films was reduced to about 50 meV, and the N acceptor energy level depth $(E_a)$ was reduced to 63 meV.

DPSS Laser에 의한 AsGeSeS,Ag/AsGeSeS 와 AsGeSeS/Ag/AsGeSeS 박막의 홀로그래픽 데이터 격자형성 (Holographic Data Grating Formation of AsGeSeS Single layer, Ag/AsGeSeS double layer And AsGeSeS/Ag/AsGeSeS Muti-layer Thin Films with the DPSS Laser)

  • 구용운;구상모;조원주;정홍배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.55-56
    • /
    • 2006
  • We investigated the diffraction grating efficiency by the DPSS laser beam wavelength to improve the diffraction efficiency on AsGeSeS & Ag/ AsGeSeS thin film. Diffraction efficiency was obtained from DPSS(532nm)(P:P)polarized laser beam on AsGeSeS, Ag/ AsGeSeS and AsGeSeS/Ag/AsGeSeS thin films. As a result, for the laser beam intensity, 0.24 mW, single AsGeSeS thin film shows the highest value of 0.161% diffraction efficiency at 300 s and for 2.4 mW, it was recorded with the fastest speed of 50 s, which the diffraction grating forming speed is faster than that of 0.24 mW beam. Ag/ AsGeSeS and AsGeSeS/ Ag/ AsGeSeS multi-layered thin film also show the faster grating forming speed at 2.4 mW and higher value of diffraction efficiency at 0.24 mW.

  • PDF

2 차원 Si 종형 Hall 소자의 자기감도 개선 (Magnetic Sensitivity Improvement of 2-Dimensional Silicon Vertical Hall Device)

  • 류지구
    • 센서학회지
    • /
    • 제23권6호
    • /
    • pp.392-396
    • /
    • 2014
  • The 2-dimensional silicon vertical Hall devices, which are sensitive to X,Y components of the magnetic field parallel to the surface of the chip, are fabricated using a modified bipolar process. It consists of the thin p-layer at Si-$SiO_2$ interface and n-epi layer to improve the sensitivity and influence of interface effect. Experimental samples are a sensor type K with and type J without $p^+$ isolation dam adjacent to the center current electrode. The results for both type show a more high sensitivity than the former's 2-dimensional vertical Hall devices and a good linearity. The measured non-linearity is about 0.8%. The sensitivity of type J and type K are about 66 V/AT and 200 V/AT, respectively. This sensor's behavior can be explained by the similar J-FET model.

Thin-layer Drying Characteristics of Rapeseed

  • Lee, Hyo-Jai;Lee, Seung-Kee;Kim, Hoon;Kim, Woong;Han, Jae-Woong
    • Journal of Biosystems Engineering
    • /
    • 제41권3호
    • /
    • pp.232-239
    • /
    • 2016
  • Purpose: The aims of this study were to define the drying characteristics of rapeseed and to determine the optimum thin-layer drying model for rapeseed by considering the effects of drying temperature and relative humidity. Methods: The thin-layer drying experiments were conducted at different combinations of drying air temperature levels of 40, 50, and $60^{\circ}C$ and relative humidity levels of 30, 45, and 60%, on both of which drying rate depends. The drying rate increased with increasing air temperature as well as decreasing relative humidity. The 13 models were fitted to the experimental data. Results: From the results of the regression analysis for empirical constants of the Page model, the values of $R^2$ were the highest (ranging from 0.9924 to 0.9966) and the values of RMSE were the lowest (ranging from 0.0169 to 0.0296). Conclusions: For all drying conditions considered, the Page model was determined to be the most suitable model for describing the thin-layer drying of rapeseed (P-value < 0.01). The moisture diffusion coefficients were calculated using the moisture diffusion equation for a spherical shape, based on Fick's second law.