• Title/Summary/Keyword: Thin metal film

Search Result 1,247, Processing Time 0.028 seconds

A Study of Photoelectrolysis of Water by Use of Titanium Oxide Films (산화티타늄 피막의 광 전기분해 특성에 관한 연구)

  • Park, Seong-Young;Cho, Byung-Won;Ju, Jeh-Beck;Yun, Kyung-Suk;Lee, Eung-Cho
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.88-99
    • /
    • 1992
  • For the development of semiconducting photoelectrode to be more stable and efficient in the process of photoelectrolysis of the water, pure titanium rods were oxidized by anodic oxidation, furance oxidation and flame oxidation and used as electrodes. The Indium islands were formed by electrodeposition of "In" thin film on $TiO_2$ and Ti by electrodeposition. Also $A1_2O_3$ and NiO islands were coated on Ti by the electron-beam evaporation technique. The maximum photoelectrochemical conversion efficiency(${\eta}$) was 0.98% for flame oxidized electrode($1200^{\circ}C$ for 2min in air). Anodically oxidized electrodes have photoelectrochemical conversion efficiency of 0.14%. Furnace oxidized electrode($800^{\circ}C$ for 10min in air) has 0.57% of photoelectrochemical efficiency and shows a band-gap energy of about 2.9eV. The $In_2O_3$ coated $TiO_2$ exhibits 0.8% of photoelectrochemical efficiency but much higher value of ${\eta}$ was obtained with the Increase of applied blas voltage. However, $Al_2O_3$ or NiO coated $TiO_2$ shows much low value of ${\eta}$. The efficiency was dependent on the presence of the metallic interstitial compound $TiO_{0+x}$(x<0.33) at the metal-semiconductor interface and the thickness of the suboxide layer and the external rutile scale.

  • PDF

The Fabrication of OTFT-OLED Array Using Ag-paste for Source and Drain Electrode (Ag 페이스트를 소스와 드레인 전극으로 사용한 OTFT-OLED 어레이 제작)

  • Ryu, Gi-Seong;Kim, Young-Bae;Song, Chung-Kun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.5
    • /
    • pp.12-18
    • /
    • 2008
  • Ag paste was employed for source and drain electrode of OTFTs and for the data metal lines of OTFT-OLED array on PC(polycarbonate) substrate. We tested two kinds of Ag-pastes such as pastes for 325 mesh and 500 mesh screen mask to examine the pattern ability and electrical performance for OTFTs. The minimum feature size was 60 ${\mu}m$ for 325 mesh screen mask and 40 ${\mu}m$ for 500 mesh screen mask. The conductivity was 60 $m{\Omega}/\square$ for 325 mesh and 133.1 $m{\Omega}/\square$ for 500 mesh. For the OTFT performance the mobility was 0.35 $cm^2/V{\cdot}sec$ and 0.12 $cm^2/V{\cdot}sec$, threshold voltage was -4.7 V and 0.9 V, respectively, and on/off current ratio was ${\sim}10^5$, for both screen masks. We applied the 500 mash Ag paste to OTFT-OLED array because of its good patterning property. The pixel was composed of two OTFTs and one capacitor and one OLED in the area of $2mm{\times}2mm$. The panel successfully worked in active mode operation even though there were a few bad pixels.

Electrical Characteristics of PECVD $Ta_2O_5$ Dielectic Thin Films on HSG and Rugged Polysilicon Electrodes (입체표면 폴리실리콘 전극에서 PECVD $Ta_2O_5$ 유전박막의 전기적 특성)

  • Cho, Yong-Beom;Lee, Kyung-Woo;Chun, Hui-Gon;Cho, Tong-Yul;Kim, Sun-Oo;Kim, Hyeong-Joon;Koo, Kyung-Wan;Kim, Dong-Won
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.2
    • /
    • pp.246-254
    • /
    • 1993
  • In order to increase the capacitance of storage electrode in the DRAM capacitor, two approaches were performed. First, hemispherical and rugged poly silicon films were made by LPCVD to increase the effective surface area of storage electrode. The even surface morphology of conventional poly silicon electrode was changed into the uneven surface of hemispherical of rugged poly silicon films. Second, PECVD $Ta_2O_5$ dielectric films were deposited and thermally treated to study the dielectrical characteristics of $Ta_2O_5$ film on each electrode. MIS capacitors with $Ta_2O_5$ films were electrically characterized by I-V, C-V and TDDB measurements. As a result, the capacitance of the electrode with uneven surface were increased by a factor of 1.2~1.5 and leakage current was increased compared with those of even surface. TDDB result indicates that the electrode with uneven surface has dielectrically more degraded than that of even surface. These results can be helpful as a basic research to develop new generation DRAM capacitors with $Ta_2O_5$ films.

  • PDF

Failure in the COG Joint Using Non-Conductive Adhesive and Polymer Bumps (감광성 고분자 범프와 NCA (Non-Conductive Adhesive)를 이용한 COG 접합에서의 불량)

  • Ahn, Kyeong-Soo;Kim, Young-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • We studied a bonding at low temperature using polymer bump and Non-Conductive Adhesive (NCA), and studied the reliability of the polymer bump/Al pad joints. The polymer bumps were formed on oxidized Si substrates by photolithography process, and the thin film metals were formed on the polymer bumps using DC magnetron sputtering. The substrate used was AL metallized glass. The polymer bump and Al metallized glass substrates were joined together at $80^{\circ}C$ under various pressure. Two NCAs were applied during joining. Thermal cycling test ($0^{\circ}C-55^{\circ}C$, cycle/30 min) was carried out up to 2000 cycles to evaluate the reliability of the joints. The bondability was evaluated by measuring the contact resistance of the joints through the four point probe method, and the joints were observed by Scanning Electron Microscope (SEM). The contact resistance of the joints was $70-90m{\Omega}$ before the reliability test. The joints of the polymer bump/Al pad were damaged by NCA filler particles under pressure above 200 MPa. After reliability test, some joints were electrically failed since thinner metal layers deposited at the edge of bumps were disconnected.

  • PDF

Analysis of C-V Characteristics of MIS Structure Based on OTFT Technology for Flexible AM-OLED (Flexible AM-OLED를 위한 OTFT 기술 기반의 MIS 구조 C-V 특성 분석)

  • Kim, Jung-Seok;Kim, Byoung-Min;Chang, Jong-Hyeon;Ju, Byeong-Kwon;Pak, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.77-78
    • /
    • 2006
  • 최근 flexible OLED의 구동에 사용하기 위한 유기박막트랜지스터(Organic Thin Film Transistor, OTFT)의 연구에서는 용매에 용해되어 spin coating이 가능한 재료의 개발에 관심을 두고 있다. 현재 pentacene으로는 아직 spin coating으로 제작할 수 있는 상용화된 제품이 없고 spin coating이 가능한 활성층 물질(active material)로 P3HT가 쓰이고 있다. 본 연구에서는 용해 가능한 P3HT 활성층 물질과 여러 종류의 용해 가능한 게이트 절연물(gate insulator, Gl)을 사용하여 안정된 소자를 구현할 수 있는 공정을 개발하는 목적으로 metal-insulator-semironductor(MIS) 소자를 제작하여 C-V 특성을 측정하고 분석하였다. 먼저 7mm${\times}$7mm 크기의 pyrex glass 시편 위에 바닥 전극으로 $1600{\AA}$ Au을 증착하고 spin coating 방식을 이용하여 PVP, PVA, PVK, BCB, Pl의 5종류의 게이트 절연층을 각각 형성하였고 그 위에 같은 방법으로 P3HT를 코팅하였다. P3HT 코팅 시 bake 공정의 유무와 spin rpm의 변화에 따른 P3HT의 두께를 측정하였다. Gl의 종류별로 주파수에 따른 capatltancc를 측정하여 비교, 분석하였다. C-V 측정 결과 PVP, PVA, PVK, BCB, Pl의 단위 면적당 capacitance 값은 각각 1.06, 2.73, 2.94, 3.43, $2.78nF/cm^2$로 측정되었다. Threshold voltage, $V_{th}$는 각각 -0.4, -0.7, -1.6, -0.1, -0.2V를 나타냈다. 주파수에 따른 capacitance 변화율을 측정한 결과 Gl 물질 모두 주파수가 높을수록 capacitance가 점점 감소하는 경향을 보였으나 1${\sim}$2nF 이내의 범위에서 작은 변화율만 나타냈다. P3HT의 두께와 bake 온도를 변화시켜 C-V 값을 측정한 결과 차이는 없었다. FE-SEM으로 관찰한 결과에서도 두께나 온도에 따른 P3HT의 표면 morphology 차이를 확인할 수 없었다. 본 연구에서 PVK와 P3HT의 조합이 수율(yield)면에서 가장 안정적이면서 $3.43\;nF/cm^2$의 가장 높은 capacitance 값을 나타내고 $V_{th}$ 값 또한 -1.6V로 가장 낮은 값을 보였다.

  • PDF

Anodic Stripping Voltammetric Determinations of Zinc, Cadmium, Lead and Copper in Freshwater and Sediment (담수 및 퇴적물에 함유된 아연, 카드뮴, 납 및 구리의 산화전극 벗김 전압전류법 정량)

  • Hahn, Young Hee;Yoo, Jeong Yeon
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.4
    • /
    • pp.180-185
    • /
    • 1997
  • Zinc, cadmium, lead and copper were simultaneously determined by depositing metals at - 1.200 V vs. a Ag/AgCl(sat. KCl) reference electrode for 150 seconds on a hanging mercury drop electrode(HMDE) or a thin mercury film electrode(TMFE), followed by scanning towards anodic direction using differential pulse voltammetric(DPASV) and square wave voltammetric(SWASV) techniques. The linear calibration curves were obtained for four metal ions simultaneously determined by DPASV with a HMDE in the concentration range between 20 and 100 ppb. However, the linear calibration plots were obtained only for $Cd^{2+}$ and $Pb^{2+}$ in the simultaneous determinations with a TMFE in the concentration range up to 100 ppb using DPASV and up to 10 ppb using SWASV. DPASV with a TMFE was about 15 times more sensitive than DPASV with a HMDE for simultaneous determinations of $Cd^{2+}$ and $Pb^{2+}$. SWASV was about 5 times more sensitive than DPASV at a TMFE. Concentrations of zinc in seven different sediment samples determined by DPASV with a HMDE and inductively coupled plasma-mass spectrometry were compared, resulting with an excellent correlation coefficient of 0.9993 and with no significant difference between two methods after t-test.

  • PDF

Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing (패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법)

  • Kang, Young Lim;Park, Tae Wan;Park, Eun-Soo;Lee, Junghoon;Wang, Jei-Pil;Park, Woon Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.83-89
    • /
    • 2020
  • For the past few decades, as part of efforts to protect the environment where fossil fuels, which have been a key energy resource for mankind, are becoming increasingly depleted and pollution due to industrial development, ecofriendly secondary batteries, hydrogen generating energy devices, energy storage systems, and many other new energy technologies are being developed. Among them, the lithium-ion battery (LIB) is considered to be a next-generation energy device suitable for application as a large-capacity battery and capable of industrial application due to its high energy density and long lifespan. However, considering the growing battery market such as eco-friendly electric vehicles and drones, it is expected that a large amount of battery waste will spill out from some point due to the end of life. In order to prepare for this situation, development of a process for recovering lithium and various valuable metals from waste batteries is required, and at the same time, a plan to recycle them is socially required. In this study, we introduce a nanoscale pattern transfer printing (NTP) process of Li2CO3, a representative anode material for lithium ion batteries, one of the strategic materials for recycling waste batteries. First, Li2CO3 powder was formed by pressing in a vacuum, and a 3-inch sputter target for very pure Li2CO3 thin film deposition was successfully produced through high-temperature sintering. The target was mounted on a sputtering device, and a well-ordered Li2CO3 line pattern with a width of 250 nm was successfully obtained on the Si substrate using the NTP process. In addition, based on the nTP method, the periodic Li2CO3 line patterns were formed on the surfaces of metal, glass, flexible polymer substrates, and even curved goggles. These results are expected to be applied to the thin films of various functional materials used in battery devices in the future, and is also expected to be particularly helpful in improving the performance of lithium-ion battery devices on various substrates.