• Title/Summary/Keyword: Thin film electrolyte

Search Result 205, Processing Time 0.021 seconds

Conditioning Effects on LSM-YSZ Cathodes for Thin-film SOFCs

  • Lee You-Kee;Visco Steven J.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.202-208
    • /
    • 1999
  • Composite cathodes of $50/50\;vol\%$ LSM-YSZ $(La_{-x}Sr_xMnO_3-yttria\;stabilized\;zirconia)$ were deposited onto dense YSZ electrolytes by colloidal deposition technique. The cathode characteristics were then examined by scanning electron microscopy (SEM) and studied by ac-impedance spectroscopy (IS). The conditioning effects on LSM-YSZ cathodes were seen and remedies for these effects were noted in order to improve the performance of a solid oxide fuel cell (SOFC). The effects of temperature on impedance, surface contamination on cathode bonding to YSZ electrolyte, changing Pt paste, aerosol spray technique applied to curved surface on microstructure and cell to cell variability were solved by testing at $900^{\circ}C$, sanding the YSZ surface, using only one batch of Pt paste, using flat YSZ plates and using consistent procedures and techniques, respectively. And then, reproducible impedance spectra were confirmed by using the improved cell and the typical spectra measured for an (air)LSM-YSZ/YSZ/LSM-YSZ(air) cell at $900^{\circ}C$ were composed of two depressed arcs. Impedance characteristics of the LSM-YSZ cathodes were also affected by experimental conditions such as catalytic interlayer, composite cathode compositions and applied current.

Electrochemical Characteristics of Anode-supported Solid Oxide Fuel Cells (연료극 지지형 고체산화물 연료전지의 전기화학적 특성)

  • Yoon Sung Pil;Han Jonghee;Nam Suk Woo;Lim Tae-Hoon;Hong Seong-Ahn;Hyun Sang-Hoon;Yoo Young-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.2
    • /
    • pp.58-64
    • /
    • 2001
  • YSZ ($8mol\%$ yttria-stabilized zirconia)-modified LSM $(La_{0.85}Sr_{0.15}MnO_3)$ composite cathodes were fabricated by formation of YSZ film on triple phase boundary (TPB) of LSM/YSZ/gas. The YSZ coating film greatly enlarged electrochemical reaction sites from the increase of additional TPB. The composite cathode was formed on thin YSZ electrolyte (about 30 Um thickness) supported on an anode and then I-V characterization and AC impedance analyses were performed at temperature between $700^{\circ}C\;and\;800^{\circ}C$. As results of the impedance analysis on the cell at $800^{\circ}C$ with humidified hydrogen as the fuel and air as the oxidant, R1 around the frequency of 1000 Hz represents the anode Polarization. R2 around the frequency of 100Hz indicates the cathode polarization, and R3 below the frequency of 10 Hz is the resistance of gas phase diffusion through the anode. The cell with the composite cathode produced power density of $0.55\;W/cm^2\;and\;1W/cm^2$ at air and oxygen atmosphere, respectively. The I-V curve could be divided into two parts showing distinctive behavior. At low current density region (part I) the performance decreased steeply and at high current density region (part II) the performance decreased gradually. At the part I the performance decrease was especially resulted from the large cathode polarization, while at the part H the performance decrease related to the electrolyte polarization.

Electrochemical Characteristics of Supercapacitor Based on Amorphous Ruthenium Oxide In Aqueous Acidic Medium (비정질 루테늄 산화물을 사용한 수계 Supercapacitor의 전기화학적 특성)

  • Choi, Sang-Jin;Doh, Chil-Hoon;Moon, Seong-In;Yun, Mun-Su;Yug, Gyeong-Chang;Kim, Sang-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.1
    • /
    • pp.21-26
    • /
    • 2002
  • A supercapacitor was developed using an amorphous ruthenium oxide material. The electrode of supercapacitor was prepared using an amorphous ruthenium oxide, which was synthesized from ruthenium trichloide hydrate$(RuCl_3{\cdo5}xH_2O)$. Thin film of tantalum was used as a current collector because it had wide. potential window characteristics than titanium and 575304 materials. A supercapacitor was assembled with ruthenium oxide as an electrode active material and 4.8M sulfuric acid solution as an electrolyte. The specific capacitance of the electrode was tested by a cyclic voltammetry using a half cell. The maximum differential specific capacitances during the oxidative and the reductive scans were 710 and $645\;F/g-RuO_2{\cdot}nH_2O$, respectively. The average specific capacitance was $521\;F/g-RuO_2{\cdot}nH_2O$. The assembled supercapacitor was protonated to the potential level of 0.5V vs. SCE. Super-capacitor, which was adjusted to the appropriate protonation level, had the specific capacitance of $151\;F/g-RuO_2{\cdot}nH_2O$ based on the concept of full cell.

Preparation and Characterization of Planar-type Artificial Calamine Powder with a High Aspect Ratio for the Application to Ultraviolet and Blue Band Protection Cosmetics (자외선 및 블루영역 차단 화장품 응용을 위한 박막 판형 인공 칼라민 소재의 합성 및 특성 평가 연구)

  • Lee, Jung-Hwan;Lee, Gun-Sub;Jo, Dong-Hyeon;Hong, Da-Hee;Yu, Jae-Hoon;Gwack, Ji-Yoo;Lee, Hee-Chul
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.3
    • /
    • pp.227-235
    • /
    • 2021
  • In this study, we have prepared pure planar-type ZnO and calamine powder containing both ZnO and Fe2O3 components as a raw material for cosmetics with UV and blue band blocking functions. The planar-type ZnO ceramic powder having a high aspect ratio in the range of 20:1 to 50:1 was synthesized by precipitation method in a zinc acetate and sodium citrate mixed solution with the electrolyte obtained by power generation with a zinc-air battery. The content of Fe2O3 in the artificial calamine ceramic powder could be increased by increasing the amount of iron chloride solution added, and in this case, some of the blue region of visible light and ultraviolet light were remarkably absorbed. When potassium acetate was added, the decomposition of the Zn(OH)42- anion in the solution was promoted to facilitate the growth of ZnO crystal in the form of a barrier wall in the vertical direction on the (0001) plane, which could increase UV absorption by providing more opportunities. By controlling the amount of iron chloride solution and potassium acetate solution added, the composition and shape of the thin film plate-shaped artificial calamine ceramic powder can be optimized, and when applied to cosmetic formulations, the light transmittance of the blue region can be greatly reduced.

SURFACE CHARACTERISTICS AND BIOACTIVITY OF ANODICALLY OXIDIZED TITANIUM SURFACES (양극산화에 의한 티타늄 산화막의 표면 특성 및 생체 활성에 관한 연구)

  • Lee, Sang-Han;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.1
    • /
    • pp.85-97
    • /
    • 2007
  • Statement of problem: Recently, anodic oxidation of cp-titanium is a popular method for treatment of titanium implant surfaces. It is a relatively easy process, and the thickness, structure, composition, and the microstructure of the oxide layer can be variably modified. Moreover the biological properties of the oxide layer can be controlled. Purpose: In this study, the roughness, microstructure, crystal structure of the variously treated groups (current, voltage, frequency, electrolyte, thermal treatment) were evaluated. And the specimens were soaked in simulated body fluid (SBF) to evaluate the effects of the surface characteristics and the oxide layers on the bioactivity of the specimens which were directly related to bone formation and integration. Materials and methods: Surface treatments consisted of either anodization or anodization followed thermal treatment. Specimens were divided into seven groups, depending on their anodizing treatment conditions: constant current mode (350V for group 2), constant voltage mode (155V for group 3), 60 Hz pulse series (230V for group 4, 300V for group 5), and 1000 Hz pulse series (400V for group 6, 460V for group 7). Non-treated native surfaces were used as controls (group 1). In addition, for the purpose of evaluating the effects of thermal treatment, each group was heat treated by elevating the temperature by $5^{\circ}C$ per minute until $600^{\circ}C$ for 1 hour, and then bench cured. Using scanning electron microscope (SEM), porous oxide layers were observed on treated surfaces. The crystal structures and phases of titania were identified by thin-film x-ray diffractmeter (TF-XRD). Atomic force microscope (AFM) was used for roughness measurement (Sa, Sq). To evaluate bioactivity of modified titanium surfaces, each group was soaked in SBF for 168 hours (1 week), and then changed surface characteristics were analyzed by SEM and TF-XRD. Results: On basis of our findings, we concluded the following results. 1. Most groups showed morphologically porous structures. Except group 2, all groups showed fine to coarse convex structures, and the groups with superior quantity of oxide products showed superior morphology. 2. As a result of combined anodization and thermal treatment, there were no effects on composition of crystalline structure. But, heat treatment influenced the quantity of formation of the oxide products (rutile / anatase). 3. Roughness decreased in the order of groups 7,5,2,3,6,4,1 and there was statistical difference between group 7 and the others (p<0.05), but group 7 did not show any bioactivity within a week. 4. In groups that implanted ions (Ca/P) on the oxide layer through current and voltage control, showed superior morphology, and oxide products, but did not express any bioactivity within a week. 5. In group 3, the oxide layer was uniformly organized with rutile, with almost no titanium peak. And there were abnormally more [101] orientations of rutile crystalline structure, and bonelike apatite formation could be seen around these crystalline structures. Conclusion: As a result of control of various factors in anodization (current, voltage, frequency, electrolytes, thermal treatment), the surface morphology, micro-porosity, the 2nd phase formation, crystalline structure, thickness of the oxide layer could be modified. And even more, the bioactivity of the specimens in vitro could be induced. Thus anodic oxidation can be considered as an excellent surface treatment method that will able to not only control the physical properties but enhance the biological characteristics of the oxide layer. Furthermore, it is recommended in near future animal research to prove these results.