• Title/Summary/Keyword: Thin film devices and applications

Search Result 225, Processing Time 0.029 seconds

Femtosecond laser pattering of ITO film on flexible substrate (펨토초 레이저를 이용한 플렉시블 ITO 패터닝 연구)

  • Sohn, Ik-Bu;Kim, Young-Seop;Noh, Young-Chul
    • Laser Solutions
    • /
    • v.13 no.1
    • /
    • pp.11-15
    • /
    • 2010
  • Indium tin oxide (ITO) provides high electrical conductivity and transparency in the visible and near IR (infrared) wavelengths. Thus, it is widely used as a transparent electrode for the fabrication of liquid crystal displays (LCDs) and organic light emitting diode displays (OLRDs), photovoltaic devices, and other optical applications. Lasers have been used for removing coating on polymer substrate for flexible display and electronic industry. In selective removal of ITO layer, laser wavelength, pulse energy, scan speed, and the repetition rate of pulses determine conditions, which are efficient for removal of ITO coating without affecting properties of the polymer substrate. ITO coating removal with a laser is more environmentally friendly than other conventional etching methods. In this paper, pattering of ITO film from polymer substrates is described. The Yb:KGW femtosecond laser processing system with a pulse duration of 250fs, a wavelength of 1030nm and a repetition rate of 100kHz was used for removing ITO coating in air. We can remove the ITO coating using a scanner system with various pulse energies and scan speeds. We observed that the amount of debris is minimal through an optical and a confocal microscope, and femtosecond laser pulses with 1030nm wavelength are effective to remove ITO coating without the polymer substrate ablation.

  • PDF

The electrochromic properties of tungsten oxide thin films coated by a sol-gel spin coating under different reactive temperature (솔-젤 스핀 코팅에 의해 증착된 텅스텐 산화물 박막의 반응 온도에 따른 전기변색특성 연구)

  • 심희상;나윤채;조인화;성영은
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.128-128
    • /
    • 2003
  • Electrochromism (EC) is defined as a phenomenon in which a change in color takes place in the presence of an applied voltage. Because of their low power consumption, high coloration efficiency, EC devices have a variety of potential applications in smart windows, mirror, and optical switching devices. An EC devices generally consist of a transparent conducting layer, electrochromic cathodic and anodic coloring materials and an ion conducting electrolyte. EC has been widely studied in transition metal oxides(e.g., WO$_3$, NiO, V$_2$O$\sub$5/) Among these materials, WO$_3$ is a most interesting material for cathodic coloration materials due to its lush coloration efficiency (CE), large dynamic range, cyclic reversibility, and low cost material. WO$_3$ films have been prepared by a variety of methods including vacuum evaporation, chemical vapor deposition, electrodeposition process, sol-gel synthesis, sputtering, and laser ablation. Sol-gel process is widely used for oxide film at low temperature in atmosphere and requires lower capital investment to deposit large area coating compared to vacuum deposition process.

  • PDF

Solution-Processed Indium Oxide Transistors

  • Facchetti, Antonio;Kim, Hyun-Sung;Byrne, Paul D.;Marks, Tobin J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.995-997
    • /
    • 2009
  • $In_2O_3$ thin-film transistors (TFTs) were fabricated on various dielectrics [$SiO_2$ and self-assembled nanodielectrics (SANDs)] by spin-coating a $In_2O_3$ film precursor solution consisting of methoxyethanol (solvent), ethanolamine (EAA, base), and $InCl_3$ as the $In^{3+}$ source. Importantly, an optimized film microstructure characterized by the high-mobility $In_2O_3$ 004 phase, is obtained only within a well-defined base: $In^{3+}$ molar ratio. The greatest electron mobilities of ~ 44 $cm^2$, for EAA:$In^{3+}$ molar ratio = 10, $V^{-1}s^{-1}$, is measured for $n^+$-Si/SAND/$In_2O_3$/Au devices. This result combined with the high $I_{on}:I_{off}$ ratios of ~ $10^6$ and very low operating voltages (< 5 V) is encouraging for high-speed applications.

  • PDF

One step facile synthesis of Au nanoparticle-cyclized polyacrylonitrile composite films and their use in organic nano-floating gate memory applications

  • Jang, Seok-Jae;Jo, Se-Bin;Jo, Hae-Na;Lee, Sang-A;Bae, Su-Gang;Lee, Sang-Hyeon;Hwang, Jun-Yeon;Jo, Han-Ik;Wang, Geon-Uk;Kim, Tae-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.307.2-307.2
    • /
    • 2016
  • In this study, we synthesized Au nanoparticles (AuNPs) in polyacrylonitrile (PAN) thin films using a simple annealing process in the solid phase. The synthetic conditions were systematically controlled and optimized by varying the concentration of the Au salt solution and the annealing temperature. X-ray photoelectron spectroscopy (XPS) confirmed their chemical state, and transmission electron microscopy (TEM) verified the successful synthesis, size, and density of AuNPs. Au nanoparticles were generated from the thermal decomposition of the Au salt and stabilized during the cyclization of the PAN matrix. For actual device applications, previous synthetic techniques have required the synthesis of AuNPs in a liquid phase and an additional process to form the thin film layer, such as spin-coating, dip-coating, Langmuir-Blodgett, or high vacuum deposition. In contrast, our one-step synthesis could produce gold nanoparticles from the Au salt contained in a solid matrix with an easy heat treatment. The PAN:AuNPs composite was used as the charge trap layer of an organic nano-floating gate memory (ONFGM). The memory devices exhibited a high on/off ratio (over $10^6$), large hysteresis windows (76.7 V), and a stable endurance performance (>3000 cycles), indicating that our stabilized PAN:AuNPs composite film is a potential charge trap medium for next generation organic nano-floating gate memory transistors.

  • PDF

Fabrication of High Tunable BST Thin Film Capacitors using Pulsed Laser Deposition (펄스 레이저 증착법에 의한 BST 박막 가변 Capacitors 제작)

  • Kim, Sung-Su;Song, Sang-Woo;Roh, Ji-Hyoung;Kim, Ji-Hong;Koh, Jung-Hyuk;Moon, Byung-Moo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.79-79
    • /
    • 2008
  • We report the growth of $Ba_{0.5}Sr_{0.5}TiO_3$(BST) thin films and their substrate-dependent electrical characteristics. BST thin films were deposited on alumina(non-single crystal), $Al_2O_3$(100) substrates by Nd:YAG Pulsed Laser Deposition(PLD) with a 355nm wavelength at substrate temperature of $700^{\circ}C$ and post-deposition annealing at $750^{\circ}C$ in flowing $O_2$ atmosphere for 1hours. BST materials had been chosen due to high dielectric permittivity and tunability for high frequency applications, To analyze the oxygen partial pressure effects, deposited films at 1, 10, 50, 100, 150, 200, 300 mTorr. The effects of oxygen pressure on structural properties of the deposited films have been investigated by X-ray diffraction(XRD) and atomic force microscope(AFM), respectively. Then we manufactured a inter-digital capacitor(IDC) patterns twenty fingers and $10{\mu}m$ gap, $700{\mu}m$ length and electrical properties were characterized. The results provide a basis for understanding the growth mechanisms and basic structural and electrical properties of BST thin films as required for tunable microwave devices applications such as varactors and tunable filters.

  • PDF

Fully Room Temperature fabricated $TaO_x$ Thin Film for Non-volatile Memory

  • Choi, Sun-Young;Kim, Sang-Sig;Lee, Jeon-Kook
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.28.2-28.2
    • /
    • 2011
  • Resistance random access memory (ReRAM) is a promising candidate for next-generation nonvolatile memory because of its advantageous qualities such as simple structure, superior scalability, fast switching speed, low-power operation, and nondestructive readout. We investigated the resistive switching behavior of tantalum oxide that has been widely used in dynamic random access memories (DRAM) in the present semiconductor industry. As a result, it possesses full compatibility with the entrenched complementary metal-oxide-semiconductor processes. According to previous studies, TiN is a good oxygen reservoir. The TiN top electrode possesses the specific properties to control and modulate oxygen ion reproductively, which results in excellent resistive switching characteristics. This study presents fully room temperature fabricated the TiN/$TaO_x$/Pt devices and their electrical properties for nonvolatile memory application. In addition, we investigated the TiN electrode dependence of the electrical properties in $TaO_x$ memory devices. The devices exhibited a low operation voltage of 0.6 V as well as good endurance up to $10^5$ cycles. Moreover, the benefits of high devise yield multilevel storage possibility make them promising in the next generation nonvolatile memory applications.

  • PDF

Polymer semiconductor based transistors for flexible display

  • Lee, Ji-Yeol;Lee, Bang-Rin;Kim, Ju-Yeong;Jeong, Ji-Yeong;Park, Jeong-Il;Jeong, Jong-Won;Gu, Bon-Won;Jin, Yong-Wan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.59.1-59.1
    • /
    • 2012
  • Organic thin-film transistors (OTFTs) with printable semiconductors are promising candidate devices for flexible active-matrix (AM) display applications. Yet, stable operation of actual display panels driven by OTFTs has seldom been reported up to date. Here, we demonstrate a flexible reflective type polymer dispersed liquid crystal (PDLC) display, in which inkjet-printed OTFT arrays are used as driving elements with excellent areal uniformity in terms of device performance. As the active semiconductor, a novel, ambient processable conjugated copolymer was synthesized. The stability of the devices with respect to electrical bias stress was improved by applying a channel-passivation layer, which suppresses the environmental effects and hence reduces the density of trap states at the channel/dielectric interface. The combination of high performance and high stability OTFT devices enabled the successful realization of stable operating flexible color-displays by inkjet-printing.

  • PDF

Applications of Holographic Optical Elements and Systems (홀로그래피 광학소자 및 시스템 응용)

  • Kim, Nam;Piao, Mei-Lan
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.3
    • /
    • pp.125-130
    • /
    • 2014
  • Holographic optical elements (HOEs) provide systems of thin-film optics that could include a variety of functions and have many advantages as optical devices in various research fields. Research and developments based on the use of HOEs in the fields of communications and displays are in progress. This paper introduces the properties of HOEs and their applications in diffractive optical elements (DOEs), holographic projection screens, and head-mounted displays (HMDs). For widespread use of HOE technology in these various applications some challenges need to be solved, as discussed in this paper.

Flexibility Improvement of InGaZnO Thin Film Transistors Using Organic/inorganic Hybrid Gate Dielectrics

  • Hwang, B.U.;Kim, D.I.;Jeon, H.S.;Lee, H.J.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.341-341
    • /
    • 2012
  • Recently, oxide semi-conductor materials have been investigated as promising candidates replacing a-Si:H and poly-Si semiconductor because they have some advantages of a room-temperature process, low-cost, high performance and various applications in flexible and transparent electronics. Particularly, amorphous indium-gallium-zinc-oxide (a-IGZO) is an interesting semiconductor material for use in flexible thin film transistor (TFT) fabrication due to the high carrier mobility and low deposition temperatures. In this work, we demonstrated improvement of flexibility in IGZO TFTs, which were fabricated on polyimide (PI) substrate. At first, a thin poly-4vinyl phenol (PVP) layer was spin coated on PI substrate for making a smooth surface up to 0.3 nm, which was required to form high quality active layer. Then, Ni gate electrode of 100 nm was deposited on the bare PVP layer by e-beam evaporator using a shadow mask. The PVP and $Al_2O_3$ layers with different thicknesses were used for organic/inorganic multi gate dielectric, which were formed by spin coater and atomic layer deposition (ALD), respectively, at $200^{\circ}C$. 70 nm IGZO semiconductor layer and 70 nm Al source/drain electrodes were respectively deposited by RF magnetron sputter and thermal evaporator using shadow masks. Then, IGZO layer was annealed on a hotplate at $200^{\circ}C$ for 1 hour. Standard electrical characteristics of transistors were measured by a semiconductor parameter analyzer at room temperature in the dark and performance of devices then was also evaluated under static and dynamic mechanical deformation. The IGZO TFTs incorporating hybrid gate dielectrics showed a high flexibility compared to the device with single structural gate dielectrics. The effects of mechanical deformation on the TFT characteristics will be discussed in detail.

  • PDF

Growth of zinc oxide thin films by oxygen plasma-assisted pulsed laser deposition

  • Pak, Sang-Woo;Suh, Joo-Young;Lee, Dong-Uk;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.208-208
    • /
    • 2010
  • Zinc oxide (ZnO) is a functional material with interesting optical and electrical properties, a wide band gap (more than 3.3 eV), a high transmittance in the visible light region, piezoelectric properties, and a high n-type conductivity. This material has been investigated for use in many applications, such as transparent electrodes, blue light-emitting diodes, and ultra-violet detector. ZnO films grown under low oxygen pressure by thin film deposition methods show low resistivity and large free electron concentration. Therefore, reducing the background carrier concentration in ZnO films is one of the major challenges ahead of realizing high-performance ZnO-based optoelectronic devices. In this study, we deposited ZnO thin films on sapphire substrates by pulsed laser deposition (PLD) with employing an oxygen plasma source to decrease the background free-electron concentration and enhance the crystalline quality. Then, the substrate temperature was varied between 200 'C to 900 'C The vacuum chamber was initially evacuated to a pressure of $10^{-6}$ Torr, and then a pure $O_2$ gas was introduced into the chamber and the pressure during deposition was maintained at $10^{-2}$ Torr. Crystallinity and orientation of ZnO films were investigated by X-ray diffraction (XRD). The film surface was analyzed with atomic force microscope (AFM). And electrical properties were measured at room temperature by Hall measurement.

  • PDF