• Title/Summary/Keyword: Thin Film Encapsulation

Search Result 72, Processing Time 0.032 seconds

Effects of multi-stacked hybrid encapsulation layers on the electrical characteristics of flexible organic field effect transistors

  • Seol, Yeong-Guk;Heo, Uk;Park, Ji-Su;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.257-257
    • /
    • 2010
  • One of the critical issues for applications of flexible organic thin film transistors (OTFTs) for flexible electronic systems is the electrical stabilities of the OTFT devices, including variation of the current on/off ratio ($I_{on}/I_{off}$), leakage current, threshold voltage, and hysteresis, under repetitive mechanical deformation. In particular, repetitive mechanical deformation accelerates the degradation of device performance at the ambient environment. In this work, electrical stabilities of the pentacene organic thin film transistors (OTFTs) employing multi-stack hybrid encapsulation layers were investigated under mechanical cyclic bending. Flexible bottom-gated pentacene-based OTFTs fabricated on flexible polyimide substrate with poly-4-vinyl phenol (PVP) dielectric as a gate dielectric were encapsulated by the plasma-deposited organic layer and atomic layer deposited inorganic layer. For cyclic bending experiment of flexible OTFTs, the devices were cyclically bent up to $10^5$ times with 5mm bending radius. In the most of the devices after $10^5$ times of bending cycles, the off-current of the OTFT with no encapsulation layers was quickly increased due to increases in the conductivity of the pentacene caused by doping effects from $O_2$ and $H_2O$ in the atmosphere, which leads to decrease in the $I_{on}/I_{off}$ and increase in the hysteresis. With encapsulation layers, however, the electrical stabilities of the OTFTs were improved significantly. In particular, the OTFTs with multi-stack hybrid encapsulation layer showed the best electrical stabilities up to the bending cycles of $10^5$ times compared to the devices with single organic encapsulation layer. Changes in electrical properties of cyclically bent OTFTs with encapsulation layers will be discussed in detail.

  • PDF

Characterization of Al2O3 Thin Film Encasulation by Plasma Assisted Spatial ALD Process for Organic Light Emitting Diodes

  • Yong, Sang Heon;Cho, Sung Min;Chung, Ho Kyoon;Chae, Heeyeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.234.2-234.2
    • /
    • 2014
  • Organic light emitting diode (OLED) is considered as the next generation flat panel displays due to its advantages of low power consumption, fast response time, broad viewing angle and flexibility. For the flexible application, it is essential to develop thin film encapsulation (TFE) to protect oxidation of organic materials from oxidative species such as oxygen and water vapor [1]. In many TFE research, the inorganic film by atomic layer deposition (ALD) process demonstrated a good barrier property. However, extremely low throughput of ALD process is considered as a major weakness for industrial application. Recently, there has been developed a high throughput ALD, called 'spatial ALD' [2]. In spatial ALD, the precursors and reactant gases are supplied continuously in same chamber, but they are separated physically using a purge gas streams to prevent mixing of the precursors and reactant gases. In this study, the $Al_2O_3$ thin film was deposited by spatial ALD process. We characterized various process variables in the spatial ALD such as temperature, scanning speed, and chemical compositions. Water vapor transmission rate (WVTR) was determined by calcium resistance test and less than $10-^3g/m^2{\cdot}day$ was achieved. The samples were analyzed by x-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FE-SEM).

  • PDF

Improvement of Permeation of Solvent-free Multi-Layer Encapsulation of thin films on Ethylene Terephthalate(PET) (고분자 기판위에 유기 용매를 사용하지 않은 다층 박막 Encapsulation 기술 개발)

  • Kang, Hee-Jin;Han, Jin-Woo;Kim, Jong-Yeon;Moon, Hyun-Chan;Choi, Sung-Ho;Park, Kwang-Bum;Kim, Tae-Ha;Kim, Hwi-Woon;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.04a
    • /
    • pp.56-57
    • /
    • 2006
  • In this paper, the inorganic multi-layer thin film encapsulation was newly adopted to protect the organic layer from moisture and oxygen. Using the electron beam, Sputter, inorganic multi-layer thin-film encapsulation was deposited onto the Ethylene Terephthalate(PET) and their interface properties between inorganic and organic layer were investigated. In this investigation, the SiON SiO2 and parylene layer showed the most suitable properties. Under these conditions, the WVTR for PET can be reduced from a level of $0.57\;g/m^2/day$ (bare subtrate) to 1*10-5 g/$m^2$/day after application of a SiON and SiO2 layer. These results indicates that the PET/SiO2/SiON/Parylene barrier coatings have high potential for flexible organic light-emitting diode(OLED) applications.

  • PDF

Ultra Thin Film Encapsulation of Organic Light Emitting Diode on a Plastic Substrate

  • Park, Sang-Hee;Oh, Ji-Young;Hwang, Chi-Sun;Lee, Jeong-Ik;Yang, Yong-Suk;Chu, Hye-Yong;Kang, Kwang-Yong
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.545-550
    • /
    • 2005
  • We have carried out the fabrications of a barrier layer on a polyethersulfon (PES) film and organic light emitting diode (OLED) based on a plastic substrate by means of atomic layer deposition (ALD). Simultaneous deposition of 30 nm $AlO_x$ film on both sides of the PES film gave a water vapor transition rate (WVTR) of $0.062 g/m^2/day (@38^{\circ}C,\;100%\;R.H.)$. Further, the double layer of 200 nm $SiN_x$ film deposited by plasma enhanced chemical vapor deposition (PECVD) and 20 nm $AlO_x$ film by ALD resulted in a WVTR value lower than the detection limit of MOCON. We have investigated the OLED encapsulation performance of the double layer using the OLED structure of ITO / MTDATA (20 nm) / NPD (40 nm) / AlQ (60 nm) / LiF (1 nm) / Al (75 nm) on a plastic substrate. The preliminary life time to reach 91% of the initial luminance $(1300 cd/m^2)$ was 260 hours for the OLED encapsulated with 100 nm of PECVD-deposited $SiN_x$ and 30 nm of ALD-deposited $AlO_x$.

  • PDF

Application of Si3N4 Thin Film as a Humidity Protection Layer for Organic Light Emitting Diode (Si3N4 박막의 유기발광소자 수분침투 방지막으로의 응용)

  • Kim, Chang-Jo;Shin, Paik-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.397-402
    • /
    • 2010
  • In this paper, we studied WVTR(water vapor transmission rate) properties of $Si_3N_4$ thin film that was deposited using TCP-CVD (transformer coupled plasma chemical vapor deposition) method for the possibility of OLED(organic light emitting diode) encapsulation. Considering the conventional OLED processing temperature limit of below $80^{\circ}C$, the $Si_3N_4$ thin films were deposited at room temperature. The $Si_3N_4$ thin films were prepared with the process conditions: $SiH_4$ and $N_2$, as reactive gases; working pressure below 15 mTorr; RF power for TCP below 500 W. Through MOCON test for WVTR, we analyzed water vapor permeation per day. We obtained that WVTR property below 6~0.05 gm/$m^2$/day at process conditions. The best preparation condition for $Si_3N_4$ thin film to get the best WVTR property of 0.05 gm/$m^2$/day were $SiH_4:N_2$ gas flow rate of 10:200 sccm, working pressure of 10 mTorr, working distance of 70 mm, TCP power of 500 W and film thickness of 200 nm. respectively. The proposed results indicates that the $Si_3N_4$ thin film could replace metal or glass as encapsulation for flexible OLED.

Encapsulation Method of OLED with Organic-Inorganic Protective Thin Films Sealed with Metal Sheet (금속판으로 봉인된 유-무기 보호 박막을 갖는 OLED 봉지 방법)

  • Lim, Su yong;Seo, Jung-Hyun;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.7
    • /
    • pp.539-544
    • /
    • 2013
  • To study the encapsulation method for heat dissipation of high brightness organic light emitting diode (OLED), red emitting OLED of ITO (150 nm) / 2-TNATA (50 nm) / NPB (30 nm) / $Alq_3$ : 1 vol.% Rubrene (30 nm) / $Alq_3$ (30 nm) / LiF (0.7 nm) / Al (200 nm) structure was fabricated, which on $Alq_3$ (150 nm) / LiF (150 nm) as buffer layer and Al as protective layer was deposited to protect the damage of OLED, and subsequently it was encapsulated using attaching film and metal sheet. The current density, luminance and power efficiency was improved according to thickness of Al protective layer. The emission spectrum and the Commission International de L'Eclairage (CIE) coordinate did not have any effects on encapsulation process using attaching film and metal sheet The lifetime of encapsulated OLED using attaching film and metal sheet was 307 hours in 1,200 nm Al thickness, which was increased according to thickness of Al protective layer, and was improved 7% compared with 287 hours, lifetime of encapsulated OLED using attaching film and flat glass. As a result, it showed the improved current density, luminance, power efficiency and the long lifetime, because the encapsulation method using attaching film and metal sheet could radiate the heat on OLED effectively.

Encapsulation of OLEDs Using Multi-Layers Consisting of Digital CVD $Si_3N_4$ and C:N Films

  • Seo, Jeong-Han;O, Jae-Eung;Seo, Sang-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.538-539
    • /
    • 2013
  • 여러 장점으로 인해 OLED는 디스플레이 및 조명 등 적용분야가 넓어지고 있지만, 수분 및 산소에 취약하여 그 수명이 제한되는 단점이 있다. 이를 해결하고자 현재까지는 glass cap을 이용한 encapsulation 기술이 적용되고 있지만, flexible 기판에 적용하지 못하는 문제가 있다. 이러한 문제를 해결하고자 여러 가지 thin film encapsulation 기술이 적용되고 있으나 보다 신뢰성이 높은 기술의 개발이 절실한 때이다. Encapsulation 무기 박막 물질로서 $Si_3N_4$ 박막은 PE-CVD (Plasma Enhanced Chemical Vapor Deposition) 등의 박막 증착법을 사용한 많은 연구가 진행되어, 저온에서의 좋은 품질의 박막 증착이 가능하지만, 100도 이하의 thermal budget을 갖는 OLED Encapsulation에 사용하기에는 충분하지 않았다. CVD 박막의 특성을 더욱 개선하기 위해 최근 ALD (Atomic Layer Deposition) 방법을 통한 $Al_2O_3$ film 증착 방법이 연구되고 있지만, 낮은 증착 속도로 인해 양산에 걸림돌이 되고 있다. 본 연구에서는 또 다른 해결책으로서 Digital CVD 방법을 이용한 양질의 $Si_3N_4$ 박막의 증착을 연구하였다. 이것은 ALD 증착법과 유사하며, 1st step에서 PECVD 방법으로 4~5 ${\AA}$의 얇은 silicon 박막을 증착하고, 2nd step에서 nitrogen plasma를 이용하여 질화 반응을 진행하고, 이러한 cycle을 원하는 두께가 될 때까지 반복적으로 진행된다. 이 때 1 cycle 당 증착속도는 7 ${\AA}$/cycle 정도였다. 최적의 증착 방법과 조건으로 기존의 CVD $Si_3N_4$ 박막 대비 1/5 이하로 pinhole을 최소화 할 수는 있지만 완벽하게 제거하기는 힘든 문제가 있고, 이를 해결하기 위한 개선을 위한 접근 방법이 필요하다고 판단하였다. 본 연구에서는 무기물 박막인 carbon nitride를 이용한 SiN/C:N multilayer 증착 연구를 진행하였다. Fig. 1은 CVD 조건으로 증착된 두께 750 nm SiN film에서 여러 층의 C:N film layer를 삽입했을 때, 38 시간의 85%/$85^{\circ}C$ 가속실험에 따라 OLED의 발광 사진이다. 그림에서 볼 수 있듯이 C:N 층을 삽입하고 또한 그 박막의 수가 증가함에 따라서 OLED에 대한 encapsulation 특성이 크게 개선됨을 확인할 수 있다.

  • PDF

Lifetime improvement of Organic Light Emitting Diode by Using LiF Thin Film and UV Glue Encapsulation

  • Hsieh, Huai-En;Huang, Bohr-Ran;Juang, Fuh-Shyang;Tsai, Yu-Sheng;Chang, Ming-Hua;Liu, Mark.O.;Su, Jou-yeh
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1703-1705
    • /
    • 2007
  • Before the ultra-violet glue encapsulation, the research evaporated LiF thin film on device surface to be the extra packaging layer for improving the lifetime of organic light-emitting diode. The formula of UV glue was specially developed. We found 100 nm LiF is the optimum thickness. The best lifetime obtained by using LiF and special UV glue is 2.4 times longer than those by commercial UV glue.

  • PDF

What Is the Key Vacuum Technology for OLED Manufacturing Process?

  • Baek, Chung-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.95-95
    • /
    • 2014
  • An OLED(Organic Light-Emitting Diode) device based on the emissive electroluminescent layer a film of organic materials. OLED is used for many electronic devices such as TV, mobile phones, handheld games consoles. ULVAC's mass production systems are indispensable to the manufacturing of OLED device. ULVAC is a manufacturer and worldwide supplier of equipment and vacuum systems for the OLED, LCD, Semiconductor, Electronics, Optical device and related high technology industries. The SMD Series are single-substrate sputtering systems for deposition of films such as metal films and TCO (Transparent Conductive Oxide) films. ULVAC has delivered a large number of these systems not only Organic Evaporating systems but also LTPS CVD systems. The most important technology of thin-film encapsulation (TFE) is preventing moisture($H_2O$) and oxygen permeation into flexible OLED devices. As a polymer substrate does not offer the same barrier performance as glass substrate, the TFE should be developed on both the bottom and top side of the device layers for sufficient lifetimes. This report provides a review of promising thin-film barrier technologies as well as the WVTR(Water Vapor Transmission Rate) properties. Multilayer thin-film deposition technology of organic and inorganic layer is very effective method for increasing barrier performance of OLED device. Gases and water in the organic evaporating system is having a strong influence as impurities to OLED device. CRYO pump is one of the very useful vacuum components to reduce above impurities. There for CRYO pump is faster than conventional TMP exhaust velocity of gases and water. So, we suggest new method to make a good vacuum condition which is CRYO Trap addition on OLED evaporator. Alignment accuracy is one of the key technologies to perform high resolution OLED device. In order to reduce vibration characteristic of CRYO pump, ULVAC has developed low vibration CRYO pumps to achieve high resolution alignment performance between Metal mask and substrate. This report also includes ULVAC's approach for these issues.

  • PDF

Thin Film Passivation of Organic Light Emitting Diodes by Catalyzer Enhanced Chemical Vapor Deposition (CECVD) (촉매반응 화학기상증착법을 이용한 유기발광소자의 박막 봉지)

  • Kim, Han-Ki;Moon, J.M.;Bae, J.H.;Jeong, S.W.;Kim, M.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.71-72
    • /
    • 2006
  • We report on plasma damage free chemical vapor deposition technique for the thin film passivation of organic light emitting diodes (OLEDs), organic thin film transistor (OTFT) and flexible displays using catalyzer enhanced chemical vapor deposition (CECVD). Specially designed CECVD system has a ladder-shaped tungsten catalyzer and movable electrostatic chuck for low temperature deposition process. The top emitting OLED with thin film $SiN_x$ passivation layer shows electrical and optical characteristics comparable to those of the OLED with glass encapsulation. This indicates that the CECVD technique is a promising candidate to grow high-quality thin film passivation layer on OLED, OTFT, and flexible displays.

  • PDF