• 제목/요약/키워드: Thin Film Encapsulation

Search Result 73, Processing Time 0.033 seconds

Thin film encapsulation of thin-cathode organic electroluminescent devices

  • Lee, Shih-Nan;Hwang, Shiao-Wen;Chen, Chin H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1034-1037
    • /
    • 2006
  • We have developed a novel thin film encapsulation method for thin-cathode OLED by introducing organic (not polymer)/inorganic multiple thin films to protect device, which is shown to slow down the permeation rate of moisture and oxygen. From the stability test of devices, the projected lifetime of thin-cathode OLED device with thin film encapsulation was similarly to that with glass lid encapsulation.

  • PDF

Plasma-polymerized Styrene Prganic thin Film as Hybrid OLEDs Encapsulation (플라즈마 중합된 Styrene을 유기박막으로 사용한 하이브리드형 OLED 봉지기술)

  • Jung, Kun-Soo;Lee, Boong-Joo;Shin, Paik-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1412-1416
    • /
    • 2014
  • We report thin-film organic moisture barriers based on polystyrene(PS) laminates deposition by PECVD for an encapsulation of OLEDs. The organic polystyrene thin-film has the benzene ring structure and high hydrophobic characteristics and it was polymerized by PECVD in dry process. Life time properties of Ca test were obtained 32 minutes at the RF 100W process conditions. From the AFM test, the roughness of multi-layer thin-film was more excellent rather than that of a single-layer thin-film. In addition, 5 layers of the multi-layer film properties were obtained 45 minutes. So that the optical and electrical properties were not affected with these plasma polymerized organic thin-film encapsulation. For life time improvement, the inorganic $Al_2O_3$ thin-film were deposited 5nm using ALD atomic layer deposition. The WVTR(Water Vaper Transmission Rate) value of hybrid thin-film encapsulation in the optimum process conditions was resulted by less than $10-3g/m^2/day$. From the results of experiment, plasma polymerized hybrid encapsulation was suggested as the flexible display applications.

Organic-Inorganic Hybrid Thin Film Fabrication as Encapsulation using TMA and Adipoyl Chloride

  • Kim, Se-Jun;Han, Gyu-Seok;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.395-395
    • /
    • 2012
  • We fabricate organic-inorganic hybrid thin film for the purpose of encapsulation by molecular layer deposition (MLD) using Trimethylaluminium (TMA) and Adipoyl Chloride (AC). Ellipsometry was employed to verify self limiting reaction of ALD. Linear relationship between number of cycle and thickness was obtained. We found that desirable organic thin film fabrication is possible by MLD surface reaction in nanoscale. Purging was carried out after dosing of each precursor to form monolayer in each sequence. We also confirmed roughness of the organic thin film by atomic force microscopy. We deposit TMA and AC at $70^{\circ}C$ and that 1.78A root mean square was obtained which indicates that uniform organic thin film was formed. We confirmed precursor's functional group by IR spectrum. We calculated WVTR of organic-inorganic hybrid super-lattice epitaxial layer using Ca test. WVTR indicates superlattice film can be possibly use as encapsulation in flexible devices.

  • PDF

Low Temperature Encapsulation-Layer Fabrication of Organic-Inorganic Hybrid Thin Film by Atomic Layer Deposition-Molecular Layer Deposition

  • Kim, Se-Jun;Kim, Hong-Beom;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.274-274
    • /
    • 2013
  • We fabricate encapsulation-layer of OLED panel from organic-inorganic hybrid thin film by atomic layer deposition (ALD) molecular layer deposition (MLD) using Al2O3 as ALD process and Adipoyl Chloride (AC) and 1,4-Butanediamine as MLD process. Ellipsometry was employed to verify self-limiting reaction of MLD. Linear relationship between number of cycle and thickness was obtained. By such investigation, we found that desirable organic thin film fabrication is possible by MLD surface reaction in monolayer scale. Purging was carried out after dosing of each precursor to eliminate physically adsorbed precursor with surface. We also confirmed roughness of the organic thin film by atomic force microscopy (AFM). We deposit AC and 1,4-Butanediamine at $70^{\circ}C$ and investigated surface roughness as a function of increasing thickness of organic thin film. We confirmed precursor's functional group by IR spectrum. We calculated WVTR of organic-inorganic hybrid super-lattice epitaxial layer using Ca test. WVTR indicates super-lattice film can be possibly use as encapsulation in flexible devices.

  • PDF

Study on the Atomic Layer Deposition System and Process of the MgO Thin Layer for the Thin Film Encapsulation of OLED (OLED의 Thin Film Encapsulation을 위한 MgO 박막의 원자층 증착 장치 및 공정에 관한 연구)

  • Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.22-26
    • /
    • 2021
  • Thin-film encapsulation (TFE) technology is most effective in preventing water vapor and oxygen permeation in the organic light emitting diodes (OLED). Of those, a laminated structure of Al2O3 and MgO were applied to provide efficient barrier performance for increasing the stability of devices in air. Atomic layer deposition (ALD) method is known as the most promising technology for making the laminated Al2O3/MgO and is used to realize a thin film encapsulation technology in organic light-emitting diodes. Atomic layer deposited inorganic films have superior barrier performance and have advantages of excellent uniformity over large scales at relatively low deposition temperatures. In this study, the control system of the MgCP2 precursor for the atomic layer deposition of MgO was established in order to deposit the MgO layer stably by the injection time of second level and the stable heating temperature. The deposition rate was obtained stably to be from 4 to 10 Å/cycle using the injection pulse times ranging from 3 to 12 sec and a substrate temperature ranging from 80 to 150 ℃.

Towards Super Thin OLED TVs: Barix Thin Film Encapsulation of Glass and Flexible Displays

  • Xi, Chu;Lin, Steven;Rosenblum, Marty;Visser, R.J.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1634-1637
    • /
    • 2008
  • We will discuss encapsulation of OLEDs on both flexible and rigid glass substrates. Accelerated testing at 6CC/90RH and 85C/85RH is compared and acceleration factors for OLED and Calcium test samples are discussed.We have tested the stability and performance of our barrier coating to much higher temperatures: up to 140 C. Water Vapor Transmission rates at temperatures from 60 to 140 C are presented. Rates and methods for low cost manufacturing on a large scale are analysed.

  • PDF

Reliability Evaluation of Atomic layer Deposited Polymer / Al2O3 Multilayer Film for Encapsulation and Barrier of OLEDs in High Humidity and Temperature Environments (OLED Barrier와 Encapsulation을 위한 원자층 증착 Polymer / Al2O3 다층 필름의 온습도 신뢰도 평가 분석)

  • Lee, Sayah;Song, Yoon Seog;Kim, Hyun;Ryu, Sang Ouk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.1-4
    • /
    • 2017
  • Encapsulation of organic based devices is essential issue due to easy deterioration of organic material by water vapor. Atomic layer deposition (ALD) is a promising solution because of its low temperature deposition and quality of the deposited film. Moisture permeation has a mechanism to pass through defects, Thin Film Encapsulation using inorganic / organic / inorganic hybrid film has been used as promising technology. $Al_2O_3$ / Polymer / $Al_2O_3$ multilayer film has shown excellent environmental protection characteristics despite of thin thicknesses of the films.

  • PDF

A Study on the Al2O3 Thin Film According to ALD Argon Purge Flow Rate and Application to the Encapsulation of OLED (ALD 아르곤 퍼지유량에 따른 Al2O3박막 분석 및 유기발광 다이오드 봉지막 적용에 관한 연구)

  • DongWoon Lee;Ki Rak Kim;Eou Sik Cho;Yong-min Jeon;Sang Jik Kwon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.23-27
    • /
    • 2023
  • Organic light-emitting diode(OLED) is very thin organic films which are hundreds of nanometers. Unlike bottom-emission OLED(BEOLED), top-emission OLED(TEOLED) emits light out the front, opaque moisture absorbents or metal foils can't be used to prevent moisture and oxygen. And it is difficult to have flexible characteristics with glass encapsulation, so thin film encapsulation which can compensate for those two disadvantages is mainly used. In this study, Al2O3 thin films by atomic layer deposition(ALD) were examined by changing the argon gas purge flow rate and we applied this Al2O3 thin films to the encapsulation of TEOLED. Ag / ITO / N,N'-Di-[(1-naphthyl)-N,N'-diphenyl]-1,1'-biphenyl-4,4'-diamine / tris-(8-hydroxyquinoline) aluminum/ LiF / Mg:Ag (1:9) were used to fabricate OLED device. The characteristics such as brightness, current density, and power efficiency are compared. And it was confirmed that with a thickness of 40 nm Al2O3 thin film encapsulation process did not affect OLED properties. And it was enough to maintain a proper OLED operation for about 9 hours.

  • PDF

Effects of Chalcogenide Glasses Thin Film Encapsulation Layer on Lifetime of Organic Light Emitting Diodes

  • Fanghui, Zhang;Jianfei, Xi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.839-842
    • /
    • 2009
  • In this paper, chalcogenide glasses material(Se, Te, Sb) is firstly used as encapsulation layer of OLEDs under high vacuum of $10^{-4}$Pa. In the experiments, properties of OLEDs encapsulated by Se, Te, Sb thin film is compared with that of device encapsulated by traditional method. It is found that Se, Te, Sb film can extend lifetime of devices to 1.4, 2, 1.3 times respectively. Chalcogenide glasses film as encapsulation layer has little effect on some characteristics of device. The research indicated that OLEDs can be well protected upon applying Se, Te, Sb film as encapsulation layer. It is clear that it can prolong the lifetime obviously.

  • PDF

Flexible Thin Film Encapsulation and Planarization Effectby Low Temperature Flowable Oxide Process

  • Yong, Sang Heon;Kim, Hoonbea;Chung, Ho Kyoon;Chae, Heeyeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.431-431
    • /
    • 2013
  • Flexible Organic Light Emitting Diode (OLED) displays are required for future devices. It is possible that plastic substrates are instead of glass substrates. But the plastic substrates are permeable to moisture and oxygen. This weak point can cause the degradation of fabricated flexible devices; therefore, encapsulation process for flexible substrate is needed to protect organic devices from moisture and oxygen. Y.G. Lee et al.(2009) [1] reported organic and inorganic multilayer structure as an encapsulation barrier for enhanced reliability and life-time.Flowable Oxide process is a low-temperature process which shows the excellent gap-fill characteristics and high deposition rate. Besides, planarization is expected by covering dust smoothly on the substrate surface. So, in this research, Bi-layer structured is used for encapsulation: Flowable Oxide Thin film by PECVD process and Al2O3 thin film by ALD process. The samples were analyzed by water vapor transmission rate (WVTR) using the Calcium test and film cross section images were obtained by FE-SEM.

  • PDF