The purpose of this study was to evaluate the method of estimating the areal precipitation reflecting the altitude of the mountainous terrain on Jeju Island by comparing and analyzing the areal precipitation using the Thiessen polygon method and the isohyetal method in mountainous streams. In terms of constructing the Thiessen polygon network, rainfall errors occurred in 94.5% and 45.8% of the Thiessen area ratio of the Jeju and Ara stations, respectively. This resulted in large areal precipitation and errors using the isohyetal method at altitudes below 600 m in the target watershed. In contrast, there were small errors in the highlands. Rainfall errors occurred in 18.91% of the Thiessen area ratio of Eorimok, 2.41% of Witseoreum, and 2.84% of Azalea Field because of the altitudinal influence of stations located in the highlands at altitudes above 600 m. Based on the areal precipitation estimation using the Thiessen polygon method, it was considered to be partially applicable to streams on Jeju Island depending on the altitude. However, the method is not suitable for mountainous streams such as the streams on Jeju Island because errors occur with altitude. Therefore, the isohyetal method is considered to be more suitable as it considers the locations of the rainfall stations and the orographic effect and because there are no errors with altitude.
This study evaluates the errors involved in the area average rainfall amounts estimated by the arithmetic mean method, the Thiessen's weighting method, and the optimal weighting method from the estimation theory. This study was applied to the upstream part of Nam-Han river basin (upper part of Youngwal) and the following results could be obtained. First, in case the raingauges are located evenly over the basin, no obvious difference can be found in the area average rainfall amounts from the arithmetic mean method or from the Thiessen's weighting method. However, as these two methods cannot consider the spatial variability of rainfall, the estimation error could be higher when the spatial variability of rainfall is high. In our application the estimation error from the arithmetic mean method or the Thiessen's weighting method was also found to be higher than that from the method from the information theory, which considers the spatial variability of rainfall. Thus, we could conclude that for the rainy season of Korea or for the mountain area when and where the spatial variability of rainfall is high, a proper method of considering the spatial variability of rainfall should be used regardless of the basin size. The isohyetal method generally used for the large basins or the optimal weighting method from the estimation theory used in this study could be good alternatives for this case.
Journal of The Korean Society of Agricultural Engineers
/
v.53
no.6
/
pp.23-29
/
2011
This study was conducted to identify the effect of lapse rate application according to elevation on the estimation of large scale watershed rainfall. For the Han river basin (26,018 $km^2$), the 11 years (2000-2010) daily rainfall data from 108 AWS (Automatic Weather Station) were collected. Especially, the 11 heavy rain and typhoon events from 2004 to 2009 were selected for trend analysis. The elevation effect by IDW (Inverse Distance Weights) interpolation showed the change up to +62.7 % for 1,200~1,600m elevation band. The effect based on 19 subbasins of WAMIS (Water Resources Management Information System) water resources unit map, the changes of IDW and Thiessen were -8.0 % (Downstream of Han river)~ +19.7 % (Upstream of Namhan river) and -5.7 %~+15.9 % respectively. It showed the increase trend as the elevation increases. For the 11 years rainfall data analysis, the lapse rate effect of IDW and Thiessen showed increase of 9.7 %~15.5 % and 6.6 %~9.6 % respectively.
Journal of The Korean Society of Agricultural Engineers
/
v.47
no.6
/
pp.3-14
/
2005
Accurate estimation of the spatial distribution of rainfall is critical to the successful modeling of hydrologic processes. The objective of this study is to evaluate the applicability of spatially distributed rainfall data. Spatially distributed rainfall was calculated using Kriging method and Thiessen method. The application of spatially distributed rainfall was appreciated to the runoff response from the watershed. The results showed that for each method the coefficient of determination for observed hydrograph was $0.92\~0.95$ and root mean square error was $9.78\~10.89$ CMS. Ordinary Kriging method showed more exact results than Simple Kriging, Universal Kriging and Thiessen method, based on comparison of observed and simulated hydrograph. The coefncient of determination for the observed peak flow was 0.9991 and runoff volume was 0.9982. The accuracy of rainfall-runoff prediction depends on the extent of spatial rainfall variability.
The Thiessen method, which is the current area average precipitation method, has serious structural limitations in accurately calculating the average precipitation in the watershed. In addition to the observation accuracy of the precipitation meter, errors may occur in the area average precipitation calculation depending on the arrangement of the precipitation meter and the direction of the heavy rain. When the watershed is small and the station density is sparse, in both simulation and observation history, the Thiessen method showed a peculiar tendency that the average precipitation in the watershed continues to increase and decrease rapidly for 10 minutes before and after the peak. And the average precipitation in the Thiessen basin was different from the rainfall radar at the peak time. In the case where the watershed is small but the station density is relatively high, overall, the Thiessen method did not show a trend of sawtooth-shaped over-peak, and the time-dependent fluctuations were similar. However, there was a continuous time lag of about 10 minutes between the rainfall radar observations and the ground precipitation meter observations and the average precipitation in the basin. As a result of examining the ground correction effect of the rainfall radar watershed average precipitation, the correlation between the area average precipitation after correction is rather low compared to the area average precipitation before correction, indicating that the correction effect of the current rainfall radar ground correction algorithm is not high.
This study proposed a novel technique, namely the Radar Polygon Method (RPM), for areal rainfall estimation based on radar precipitation data. The RPM algorithm has the following steps: 1. Determine a map of the similar rainfall occurrence of which each grid cell contains the binary information on whether the grid cell rainfall is similar to that of the observation gage; 2. Determine the similar rainfall probability map for each gage of which each grid cell contains the probability of having the rainfall similar to that of the observation gage; 3. Determine the governing territory of each gage by comparing the probability maps of the gages. RPM method was applied to the Anseong stream basin. Radar Polygons and Thiessen Polygons of the study area were similar to each other with the difference between the two being greater for the rain gage highly influenced by the orography. However, the weight factor between the two were similar with each other. The significance of this study is to pioneer a new application field of radar rainfall data that has been limited due to short observation period and low accuracy.
Journal of the Korea Society of Computer and Information
/
v.29
no.3
/
pp.67-74
/
2024
In this paper, we present a study aimed at analyzing how different rainfall measurement methods affect the performance of reservoir water level predictions. This work is particularly timely given the increasing emphasis on climate change and the sustainable management of water resources. To this end, we have employed rainfall data from ASOS, AWS, and Thiessen Network-based measures provided by the KMA Weather Data Service to train our neural network models for reservoir yield predictions. Our analysis, which encompasses 34 reservoirs in Jeollabuk-do Province, examines how each method contributes to enhancing prediction accuracy. The results reveal that models using rainfall data based on the Thiessen Network's area rainfall ratio yield the highest accuracy. This can be attributed to the method's accounting for precise distances between observation stations, offering a more accurate reflection of the actual rainfall across different regions. These findings underscore the importance of precise regional rainfall data in predicting reservoir yields. Additionally, the paper underscores the significance of meticulous rainfall measurement and data analysis, and discusses the prediction model's potential applications in agriculture, urban planning, and flood management.
This article includes hydrometeorological analysis of evapotranspiration and precipitation, which are used available basic data for a certain basin water budget. Evapotranspiration on water surface, bare soil and rice fields is directly measured by Thornthwaite's type Lysimeter and on water surface and vegetables computed using the Penman's equation. Areal precipitation is analized through the Thiessen method and arithmatic mean method. It is interested fact that the correlation coefficient for Class A Pan's evaporation vs. the actual evapotranspiration is the highest value among the coefficients for different type evaporimeter and Penman equation, and evaporation ratio on rice field's evapotranspiration vs. Class A Pan's evaporation is 1. 5-2. 3.
In this study, an alternative spatial analysis method against conventional methods such as Thiessen method, Inverse Distance method, and Kriging method, named Spatial-Analysis Neural-Network (SANN) is presented. It is based on neural network modeling and provides a nonparametric mean estimator and also estimators of high order statistics such as standard deviation and skewness. In addition, it provides a decision-making tool including an estimator of posterior probability that a spatial variable at a given point will belong to various classes representing the severity of the problem of interest and a Bayesian classifier to define the boundaries of subregions belonging to the classes. In this paper, the SANN is implemented to be used for analyzing a mean annual precipitation filed and classifying the field into dry, normal, and wet subregions. For an example, the whole area of South Korea with 39 precipitation sites is applied. Then, several useful results related with the spatial variability of mean annual precipitation on South Korea were obtained such as interpolated field, standard deviation field, and probability maps. In addition, the whole South Korea was classified with dry, normal, and wet regions.
KSCE Journal of Civil and Environmental Engineering Research
/
v.26
no.1B
/
pp.7-14
/
2006
The radar relationship was estimated for the selected rainfall event at Yeongchun station within Chungjudam basin where the discharge record was the range of from 1,000 CMS to 9,000 CMS. By calibrating the rainfall coefficient parameter estimated by radar relationship in small hydrology basin, rainfall with the topography properties was calculated. Three different rainfall estimation methods were compared:(1) radar relationship method (2) Thiessen method (3) Isohyetal method (4) Inverse distance method. Basin model was built by applying HEC-GeoHMS which uses digital elevation model to extract hydrological characteristic and generate river network. The proposed basin model was used as an input to HEC-HMS to build a runoff model. The runoff estimation model applying radar data showed the good result. It is proposed that the radar data would produce more rapid and accurate runoff forecasting especially in the case of the partially concentrated rainfall due to the atmospheric change. The proposed radar relationship could efficiently estimate the rainfall on the study area(Chungjudam basin).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.