• Title/Summary/Keyword: Thickness uniformity

검색결과 363건 처리시간 0.023초

두께 방향 섬유체적비 불균일이 원통형 복합재 격자 구조 좌굴하중에 미치는 영향 (The Effect of Fiber Volume Fraction Non-uniformity in Thickness Direction on the Buckling Load of Cylindrical Composite Lattice Structures)

  • 공승택;전민혁;김인걸;이상우
    • Composites Research
    • /
    • 제34권2호
    • /
    • pp.129-135
    • /
    • 2021
  • 본 논문에서는 필라멘트 와인딩 공정에서 발생하는 두께 방향 섬유체적비 불균일이 원통형 복합재 격자 구조의 좌굴하중에 미치는 영향을 확인하기 위해서 Vasiliev가 제안한 원통형 복합재 격자 구조 좌굴하중 이론식을 변형하여 섬유체적비에 따른 좌굴하중 저하를 확인하였다. 섬유체적비에 따라 격자 구조 리브의 각 층의 두께를 달리하였으며, 혼합법칙을 사용하여 각 층별로 물성치를 다르게 적용하였다. 구조물 크기, 두께, 섬유체적비 평균값을 달리한 유한요소모델에 대한 선형좌굴해석을 수행하였다. 최종적으로 이론식을 사용한 등가모델의 좌굴 하중 계산 결과와 유한요소해석 결과를 비교하여 두께 방향 섬유체적비 불균일이 원통형 복합재 격자 구조의 좌굴하중 저하의 원인이 될 수 있음을 확인하였다.

광경화형 글래스아이오노머 시멘트의 두께 및 시간경과에 따른 경도의 변화 (HARDNESS CHANGE OF LIGHT-ACTIVATED GLASS IONMER CEMENT WITH THICKNESS AND TIME)

  • 이경진;오원만;김선헌
    • Restorative Dentistry and Endodontics
    • /
    • 제20권1호
    • /
    • pp.303-315
    • /
    • 1995
  • An adequate and homogeneous cure of light-activated restroative material is very important for improvement of marginal adaptation and prevention of marginal leakage, secondary caries and pulpal irritation as well as expressing natural physical property of that material. The purpose of this study was to evaluate the change of surface hardness and cure uniformity of light-activated glass ionomer cements. Restorative(Fuji II LC, Vitremer) and lining(Baseline VLC, Vitrebond) light-activated glass ionomer cements were investigated for this study. The surface hardness of the top and bottom surfaces and cure uniformity of each 1mm, 1.5mm, 2mm, 2.5mm & 3mm in the thickness of specimen were measured immediately, at 1 hour, 24 hours and 1 week after light activation. The surface hardness change and cure uniformity of all the specimens were measured by Knoop hardness tester. The results were as follows. 1. The surface hardness of top and bottom surfaces in all groups increased with time(p<0.01). 2. Both top and bottom surfaces hardness of Vitrebond group measured immediately after light-activation were significantly lower than those of the other groups(p<0.01). 3. The surface hardness of top and bottom surfaces of restorative light -activated glass ionomer cements was higher than those of lining materials at 1 week(p<0.10). 4. Surface hardness of Vitremer group decreased as the specimen thickness increased, except top and bottom surfaces hardness of the specimen at 1 week(p<0.01). There was no significant difference in the surface hardness of Fuji II LC with changes in the thickness except bottom surface hardness of specimen at 24 hours and 1 week (p>0.05). 5. Surface hardness of Vitrebond group significantly decreased as the specimen thickness increased(p<0.01). There was no significant difference in the surface hardness of Baseline VLC group with changes in the thickness except bottom surface hardness of specimen measured immediately after light -activation(p>0.05). 6. The hardness ratio of top against bottom surface in all groups decreased with time(p<0.05). 7. There was no significant difference in the hardness ratio of top against bottom surface with changes of the thickness except Vitrebond group, 24 hours and 1 week of Vitremer group and 1 week of Baseline VLC group (p>0.05). These results suggest that surface hardness of restorative ligh-activated glass ionomer cements were highter than those of lining light-activated materials. In all groups, the surface hardness and cure uniformity continuously increased with time.

  • PDF

실험계획법을 통한 3.5인치 도광판의 두께 편차 최적화에 대한 연구 (Development of a precision machining process for the outer cylinder of vacuum roll for film transfer)

  • 이효은;김종선
    • Design & Manufacturing
    • /
    • 제18권2호
    • /
    • pp.41-50
    • /
    • 2024
  • In this study, experimental design methods were used to derive optimal process conditions for improving the thickness uniformity of a 0.40 mm, 3.5 inch light guide panel. Process mapping and expert group analysis were used to identify factors that influence the thickness of injection molded products. The key factors identified were mold temperature, mold temperature, injection speed, packing pressure, packing time, clamp force, and flash time. Considering the resin manufacturer's recommended process conditions and the process conditions for similar light guide plates, a three-level range was selected for the identified influencing factors. L27 orthogonal array process conditions were generated using the Taguchi method. Injection molding was performed using these L27 orthogonal array to mold the 3.5 inch light guide plates. Thickness measurements were then taken, and the results were analyzed using the signal-to-noise ratio to maximize the CpK value, leading to the determination of the optimal process conditions. The thickness uniformity of the product was analyzed by applying the derived optimum process conditions. The results showed a 97.5% improvement in the Cpk value of 3.22 compared to the process conditions used for similar light guide plates.

탄화규소 화학기상증착 공정에서 CFD를 이용한 균일도 향상 연구 (Improvement of uniformity in chemical vapor deposition of silicon carbide using CFD)

  • 서진원;김준우;한윤수;최균;이종흔
    • 한국결정성장학회지
    • /
    • 제24권6호
    • /
    • pp.242-245
    • /
    • 2014
  • 탄화규소의 화학기상증착 중에 두께 균일성을 향상시키기 위하여 평행하게 회전하는 3단 서셉터를 포함하는 CVD 장치에 대하여 전산유체역학(CFD) 시뮬레이션을 수행하였다. 실제 증착 실험에서는 단 간의 두께 균일성은 상당히 만족스러웠으나 같은 단 위에서는 위치에 따라 두께가 균일하지 못한 3C-SiC 상이 얻어지는 것을 확인하였다. 불균일의 원인으로는 서셉터의 회전 속도에 따른 영향으로 판단되었다. CFD 결과로부터 단 간의 균일성을 향상시키기 위해서는 120도 분기 노즐을 주입구에 설치하는 것이 바람직할 것으로 판단되었으며 단 내의 균일도 향상은 회전 속도를 줄임으로써 가능할 것으로 생각된다. 이렇게 제작된 탄화규소가 증착된 흑연 부품은 고경도, 내산화성 및 분진 억제 특성을 갖고 있어서 반도체용 부품으로 사용될 수 있다.

A Study on the Deposit Uniformity and Profile of Cu Electroplated in Miniaturized, Laboratory-Scale Through Mask Plating Cell for Printed Circuit Board (PCBs) Fabrication

  • Cho, Sung Ki;Kim, Jae Jeong
    • Korean Chemical Engineering Research
    • /
    • 제54권1호
    • /
    • pp.108-113
    • /
    • 2016
  • A miniaturized lab-scale Cu plating cell for the metallization of electronic devices was fabricated and its deposit uniformity and profile were investigated. The plating cell was composed of a polypropylene bath, an electrolyte ejection nozzle which is connected to a circulation pump. In deposit uniformity evaluation, thicker deposit was found on the bottom and sides of substrate, indicating the spatial variation of deposit thickness was governed by the tertiary current distribution which is related to $Cu^{2+}$ transport. The surface morphology of Cu deposit inside photo-resist pattern was controlled by organic additives in the electrolyte as it led to the flatter top surface compared to convex surface which was observed in the deposit grown without organic additives.

두께 균일도 향상을 위한 LPCVD 챔버 내 웨이퍼 온도 분포 분석 (Analysis of temperature distribution of wafers inside LPCVD chamber for improvement of thickness uniformity)

  • 강승환;김병훈;공병환;이재원;고한서
    • 한국가시화정보학회지
    • /
    • 제14권2호
    • /
    • pp.25-30
    • /
    • 2016
  • The wafer temperature and its uniformity inside the LPCVD chamber were analyzed. The temperature uniformity at the end of the wafer load depends on the heat-insulating cap. The finite difference method was used to investigate the radiation and conduction heat transfer mechanisms, and the temperature field and heat diffusion in the LPCVD chamber was visualized. It was found that the temperature uniformity of the wafers could be controlled by the size and distance of the heat-insulating cap.

트랜스퍼 몰딩 방식을 이용한 고 색 균일성 특성을 가지는 백색 LED 램프 (Development of White LED Lamp Having High Color Uniformity With Transfer Molding Technology)

  • 유순재;김도형
    • 한국전기전자재료학회논문지
    • /
    • 제23권1호
    • /
    • pp.38-41
    • /
    • 2010
  • Compared to conventional molding technology, the color uniformity of light direction emitted from LED is improved with PCB type lead frame technology in which metal thin film is used and transfer molding technology which makes the density of phosphor uniform by manufacturing high density LED lamp. The light efficiency and the color uniformity of the LED are improved by molding the phosphor layer outside of chip and controlling the thickness of the phosphor layer. CIE x,y difference of LED in major axis is also improved uniformly from 0 to 90 degrees.

The Study on the Uniformity, Deposition Rate of PECVD SiO2 Deposition

  • Eun Hyeong Kim;Yoon Hee Choi;Hyeon Ji Jeon;Woo Hyeok Jang;Garam Kim
    • 반도체디스플레이기술학회지
    • /
    • 제23권2호
    • /
    • pp.87-91
    • /
    • 2024
  • SiO2, renowned for its excellent insulating properties, has been used in the semiconductor industry as a valuable dielectric material. High-quality SiO2 films find applications in gate spacers and interlayer insulation gap-fill oxides, among other uses. One of the prevalent methods for depositing these SiO2 films is plasma enhanced chemical vapor deposition (PECVD) favored for its relatively low processing costs and ability to operate at low temperatures. However, compared to the increasingly utilized atomic layer deposition (ALD) method, PECVD exhibits inferior film characteristics such as uniformity. This study aims to produce SiO2 films with uniformity as close as possible to those achieved by ALD through the adjustment of PECVD process parameters. we conducted a total of nine PECVD processes, varying the process time and gas flow rates, which were identified as the most influential factors on the PECVD process. Furthermore, ellipsometry analysis was employed to examine the uniformity variations of each process. The experimental results enabled us to elucidate the relationship between uniformity and deposition rate, as well as the impact of gas flow rate and deposition time on the process outcomes. Additionally, thickness measurements obtained through ellipsometer facilitate the identification of optimal process parameters for PECVD.

  • PDF

실험계획법에 의한 $CF_4/O_2$ 플라즈마 에칭공정의 최적화에 관한 연구 (Experimental Analysis and Optimization of Experimental Analysis and Optimization of $CF_4/O_2$ Plasma Etching Process Plasma Etching Process)

  • 최만성;김광선
    • 반도체디스플레이기술학회지
    • /
    • 제8권4호
    • /
    • pp.1-5
    • /
    • 2009
  • This investigation is applied Taguchi method and the analysis of variance(ANOVA) to the reactive ion etching(RIE) characteristics of $SiO_2$ film coated on a wafer with Experimental Analysis and Optimization of $CF_4/O_2$ Plasma Etching Process mixture. Plans of experiments via nine experimental runs are based on the orthogonal arrays. A $L_9$ orthogonal array was selected with factors and three levels. The three factors included etching time, RF power, gas mixture ratio. The etching rate of the film were measured as a function of those factors. In this study, the etching thickness mean and uniformity of thickness of the RIE are adopted as the quality targets of the RIE etching process. The partial factorial design of the Taguchi method provides an economical and systematic method for determining the applicable process parameters. The RIE are found to be the most significant factors in both the thickness mean and the uniformity of thickness for a RIE etching process.

  • PDF

스퍼터 금속 박막 균일도 예측을 위한 딥러닝 기반 모델 검증 연구 (Verified Deep Learning-based Model Research for Improved Uniformity of Sputtered Metal Thin Films)

  • 이은지;유영준;변창우;김진평
    • 반도체디스플레이기술학회지
    • /
    • 제22권1호
    • /
    • pp.113-117
    • /
    • 2023
  • As sputter equipment becomes more complex, it becomes increasingly difficult to understand the parameters that affect the thickness uniformity of thin metal film deposited by sputter. To address this issue, we verified a deep learning model that can predict complex relationships. Specifically, we trained the model to predict the height of 36 magnets based on the thickness of the material, using Support Vector Machine (SVM), Multilayer Perceptron (MLP), 1D-Convolutional Neural Network (1D-CNN), and 2D-Convolutional Neural Network (2D-CNN) algorithms. After evaluating each model, we found that the MLP model exhibited the best performance, especially when the dataset was constructed regardless of the thin film material. In conclusion, our study suggests that it is possible to predict the sputter equipment source using film thickness data through a deep learning model, which makes it easier to understand the relationship between film thickness and sputter equipment.

  • PDF