• Title/Summary/Keyword: Thickness strain analysis

Search Result 572, Processing Time 0.027 seconds

평면변형장출실험을 이용한 스탬핑 성형성 평가 (A plane strain punch stretching test for evaluating stamping formability)

  • 김영석;남재복
    • 오토저널
    • /
    • 제15권2호
    • /
    • pp.121-129
    • /
    • 1993
  • Plane strain punch stretching test (PSST) was developed to evaluate stamping formability of sheet materials. In this test, the rectangular specimen of sheet material is uniformly stretched up to fracture by raising a specially designed punch to certainly assure plane strain stretching deformation along the longitudinal direction of the specimen. The stamping formability was evaluated by limit punch height(LPH) in plane strain punch stretching test compared to limit dome height(LDH) in hemispherical punch stretching test. LPH-value in PSST well ranks the stamping formability of various material and correlates with press performance. Moreover by using ultrasonic thickness gauge the plane strain intercept-limit plane strain(FLCo)-in forming limit curve can be accurately determined from thickness measurement around the fracture area. The FLCo derived from thickness measurement well correlates with the results from circle grid analysis for the deformed circle grid marked on the surface of the specimen.

  • PDF

굽힘을 고려한 원형 및 정사각형컵 딥드로잉 공정의 탄소성 유한요소해석 (Elastic-Plastic Finite Element Analysis of Deep Drawings of Circular and Square Cups Considering Bending)

  • 심현보;양동열
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1738-1750
    • /
    • 1994
  • Both cylindrical cup drawing and square cup drawing are analyzed using membrane analysis as well as shell analysis by the elastic-plastic finite element method. An incremental formulation incorporating the effect of large deformation and normal anisotropy is used for the analysis of elastic-plastic non-steady deformation. The computed results are compared with the existing experimental results to show the validity of the analysis. Comparisons are made in the punch load and distribution of thickness strain between the membrane analysis and the shell analysis for both cylindrical and square cup drawing processes. In punch load, both analyses show very little difference and also show generally good agreement with the experiment. For the cylindrical cup deep drawing, the computed thickness strain of a membrane analysis, however, shows a wide difference with the experiment. In the shell analysis, the thickness strain shows good agrement with the experiment. For the square cup deep drawing, both membrane and shell analyses show a wide difference with experiment, this may be attributable to the ignorance of the shear deformation. Concludingly, it has been shown that the membrane approach shows a limitation for the deep drawing process in which the effect of bending is not negligible and more exact information on the thickness strain distribution is required.

축대칭 정수압 벌징의 유한요소 해석 (Finite Element Analysis of Axisymmetric Hydrostatic Bulging)

  • 백남주;강대민
    • 한국정밀공학회지
    • /
    • 제1권3호
    • /
    • pp.71-84
    • /
    • 1984
  • This paper examined strain distribution and radius of curvature of the bulge by finite element method and investigated limit polar thickness strain to predict the formability of sheet metal as we substituted effective strain and the radius of curvature obtained by FEM into instability condition equation successively. In experiment, the radius of curvature and limit polar thickness strainwere obtained by Moire method. Also, a concent- ric set of photogrid circles was used to measure the strain of arbitrary point and mild steel was used as material. This results obtained are as follows: 1) The radius of curvature obtained by FEM is in good agreement with the Moire experimental value. 2) The polar thickness strain is getting larger as the inside is approached from the edge. This means that fracture occurred near the ploe. 3) The circumferential strains agree closely with the meridian strains and the polar thickness strain is about twice the circumferential (or meridian) strain. This result agrees with the fact that anisotropy coefficient (R-value) obtained by tensile test is about one. 4) The theoretical results of limit polar thickness strain obtained by authors' method are better agreement with experimental results than other theoretical results. Therefore, we can better predict the formability of sheet metal with authors' method.

  • PDF

Micro-scale dependent static stress and strain analyses of thickness-stretching micro plate in sport application

  • Mingjun Xia
    • Advances in concrete construction
    • /
    • 제15권5호
    • /
    • pp.349-358
    • /
    • 2023
  • Aim of this work is investigating effect of thickness-stretching formulation on the quasi three-dimensional analysis of micro plate based on a thickness-stretched and shear deformable model through principle of virtual work and micro-scale dependent constitutive relations. Governing differential equations are derived in terms of five unknown functions and the analytical solution is derived using Navier's technique. To explore effect of thickness stretching model on the static results, a comparison between the results with and without thickness stretching effect is presented.

금형두께에 대한 1차 구조해석 결과를 기반으로 한 2차 최적화 해석에 관한 연구 (A Study on the Secondary Optimization Analysis based on the Result of Primary Structure Analysis for the Die Thickness)

  • 이종배;김상현;우창기
    • 한국산학기술학회논문지
    • /
    • 제15권6호
    • /
    • pp.3448-3454
    • /
    • 2014
  • 기존의 구조해석은 탄성해석을 일반적으로 실무에서 주축으로 해왔다. 때문에 보다 정밀한 해석을 위하여 재료와 기하학적인 비선형을 고려한 해석의 필요성이 끊임없이 대두되어 왔다. 따라서 본 연구에서는 간단한 모델을 제작하여 비선형 원리를 적용한 최적화를 수행하여 기존의 구조해석의 경험자들은 누구나 용이하게 해석을 수행할 수 있는 이론과 방법을 제시하는데 있다. 본 연구에서 소개되는 모델은 금형 다이리브에 적용될 수 있도록 전단하중에 대하여 충분한 강도로 Strain, Stress가 적게 발생하게 하여, 초기에는 Strain, Stress가 크기에 맞게 형상을 재구성하고 Hyperstudy와 Abaqus 연동에 의한 비선형으로 해석하고 제품에서 허용되는 최대, 최소 Stress 범위와 최소 Strain을 갖는 조건하에서 일정한 증가치를 만들게 하였다. 실험 모델에서 Plate 두께가 40 Newton의 힘으로 주어질 때 Iteration 처리로 금형 두께에 따른 Stress와 Strain에 대한 금형두께에 적용하고자 했을 때 7~8mm 두께가 최적화라는 결론을 얻을 수 있었다.

An asymptotic multi-scale approach for beams via strain gradient elasticity: surface effects

  • Kim, Jun-Sik
    • Multiscale and Multiphysics Mechanics
    • /
    • 제1권1호
    • /
    • pp.15-33
    • /
    • 2016
  • In this paper, an asymptotic method is employed to formulate nano- or micro-beams based on strain gradient elasticity. Although a basic theory for the strain gradient elasticity has been well established in literature, a systematic approach is relatively rare because of its complexity and ambiguity of higher-order elasticity coefficients. In order to systematically identify the strain gradient effect, an asymptotic approach is adopted by introducing the small parameter which represents the beam geometric slenderness and/or the internal atomistic characteristic. The approach allows us to systematically split the two-dimensional strain gradient elasticity into the microscopic one-dimensional through-the-thickness analysis and the macroscopic one-dimensional beam analysis. The first-order beam problem turns out to be different from the classical elasticity in terms of the bending stiffness, which comes from the through-the-thickness strain gradient effect. This subsequently affects the second-order transverse shear stress in which the surface shear stress exists. It is demonstrated that a careful derivation of a first strain gradient elasticity embraces "Gurtin-Murdoch traction" as the surface effect of a one-dimensional Euler-Bernoulli-like beam model.

다층 구조에 대한 새로운 strain 해석 모델 (A new strain analysis model in epitaxial multilayer system)

  • 장동현;심종인
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2007년도 하계학술발표회 논문집
    • /
    • pp.237-238
    • /
    • 2007
  • A new strain analysis model, so called the stress matched model, in an epitaxial multilayer system is proposed. The model makes it possible to know the strain, the stress, the elastic strain energy in each epitaxial layer. Analytical formulas of strain parameters in each epitaxial layer are derived under assumptions that the substrate thickness is finite and the in-plane lattice constant is the same for all epitaxial layers for dislocation free growth. As an example, the model is applied to a 405nm InGaN/InGaN multiple quantum well laser diode. Analysis result shows that AlxGa1-xN layer with Al mole fraction of 0.06 and the thickness of 6${\mu}m$ is one of good templates for a laser. In fact, this layer structure coincides with experimentally optimized one.

  • PDF

Strain measurement in the interface between crystalline Silicon and amorphous Silicon with MEIS

  • Yongho Ha;Kim, Sehun;Kim, H.K.;D.W. Moon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.178-178
    • /
    • 1999
  • Low temperature Si epitaxy can provide flexibility for a device designer to tailor or optimize the device performance. It is better method for controlling the doping thickness, concentration and profile than ion implantation and diffusion. But there is a limited growth thickness in this method. At a given temperature, the film grows epitaxially for a certain limiting thickness(hepi) and becomes amorphous. The transition from crystalline Si to amorphous Si is abrupt. In this study, Si film was deposited by ion beam sputter deposition on Si (0001) above a limiting thickness and measure the strain in the interface between crystalline Si and amorphous Si. The strain was compressive and the maximum value was about 2%.

  • PDF

Creep analysis of plates made of functionally graded Al-SiC material subjected to thermomechanical loading

  • Majid Amiri;Abbas Loghman;Mohammad Arefi
    • Advances in concrete construction
    • /
    • 제15권2호
    • /
    • pp.115-126
    • /
    • 2023
  • This paper investigates creep analysis of a plate made of Al-SiC functionally graded material using Mendelson's method of successive elastic solution. All mechanical and thermal material properties, except Poisson's ratio, are assumed to be variable along the thickness direction based on the volume fraction of reinforcement and thickness. First, the basic relations of the plate are derived using the Love-Kirchhoff plate theory. The solution of governing equations yields an elastic solution to start creep analysis. The creep behavior is demonstrated through Norton's equation based on Pandey's experimental results extracted for Al-SiC functionally graded material. A linear variation is assumed for temperature distribution along the thickness direction. The creep strain, as well as the thermal strain, are included in the governing equations derived from classical plate theory for mechanical strain. A successive elastic solution based on Mendelson's method is employed to derive the history of stresses, strains, and displacements over a long time. History of stresses and deformations are obtained over a long time to predict damage to the plate because of various loadings, and material composition along the thickness and planar directions.

흑연/에폭시 복합재료의 혼합모우드 층간분리 해석 (Analysis of Mixed Mode Delamination in Graphite/Epoxy Composite)

  • 염영진;유희
    • 한국자동차공학회논문집
    • /
    • 제4권4호
    • /
    • pp.171-178
    • /
    • 1996
  • DCB(pure mode I) and CLS(mixed mode) tests were performed to investigate the effect of fracture mode on the interlaminar fracture of composite laminate. Mode I critical strain energy release rate was found to be $133J/m^2$ from the DCB test and total strain energy release rate decreased from $1, 270J/m^2$ as thickness ratio(tl/t) varied from 0.333 to 0.667 from the crease from the CLS test. Crack length had no effect on the total strain energy release rate and load was almost constant during the crack growth of the specimen which had the specific thickness ratio. Crack initiated when the stress of the strap ply reached constant stress $42kgf/mm^2$ which was found to be independent of the thickness ratio.

  • PDF