• Title/Summary/Keyword: Thickness strain

Search Result 1,215, Processing Time 0.025 seconds

Deformation behavior, evolution of strain states and textures during roll cladding of five ply composite sheets (5겹 복합판재 시료의 압연시 각 판재 층의 변형상태 및 집합조직의 형성)

  • Kim, J.K.;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.413-416
    • /
    • 2006
  • Two clad composites of five ply sheets comprising STS430/AA3003/AA3003/AA3003/STS430 and STS430/AA3003/STS430/AA3003/STS430 were produced by roll cladding at $350^{\circ}C$. In order to clarify the deformation behavior and strain states in the composites during roll cladding, the variation of individual sheet thickness and the evolution of through thickness textures and microstructures of the composites were investigated. The thickness reduction of each sheet depended on the location of the sheet and on the strength of each sheet in the composites. In order to elucidate the evolution of textures and microstructures in AA3003 sheets, the strain states in AA3003 sheets during roll cladding were calculated by FEM. The formation of shear textures and fine grains in AA3003 sheet was discussed in terms of the strain states in each sheet layer. Finally, the strain states extracted from the FEM were verified by texture simulations

  • PDF

Improvement of shear deformation by controlling reduction per a rolling pass during asymmetrical cold rolling in AA 5052 (AA5052 판재의 비대칭 냉간압연 시 압연 패스당 압하율 제어에 의한 전단 변형 향상)

  • Kang, H.G.;Han, Y.H.;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.226-228
    • /
    • 2007
  • During asymmetrical cold rolling in AA 5052 sheet a reduction per a rolling pass was varied to investigate the effect of the ratio of the contact length between the roll and sample ($l_c$) to the sheet thickness (d) on the formation of shear textures. In order to intensify the shear deformation during asymmetrical rolling, AA 5052 sheet was asymmetrically cold rolled without lubrication by using different roll velocities of upper and lower rolls. Asymmetrical rolling with $l_c$/d=1.8 led to the formation of texture gradients throughout the sheet thickness in which the outer thickness layers depicted shear textures and the center thickness layers displayed a rolling texture. Asymmetrical rolling with $l_c$/d=3.1 gave rise to the formation of shear textures in the whole through-thickness layer. The strain states associated with asymmetrical rolling were investigated by the finite element method (FEM) simulation. FEM results indicated that the evolution of deformation texture in a thickness layer is strongly governed by integrated values of strain rates and along the streamline in the roll gap.

  • PDF

A Study on the Optimum Thickness Distributions of Plate Structures with Different Essential Boundary Conditions (경계조건에 따른 판 구조물의 최적두께분포에 대한 연구)

  • Lee, Sang-Jin;Kim, Ha-Ryong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.4 s.18
    • /
    • pp.53-59
    • /
    • 2005
  • This paper provides the results of the investigation on the optimum thickness distribution of plate structures with different essential boundary conditions. In this study, the strain energy to be minimized is considered as the objective function and the initial volume of structures is used as the constraint function. The computer-aided geometric design (CAGD) such as Coon's patch representation is used to represent the thickness distribution of plates. A reliable degenerated shell finite element is adopted to calculate the accurate strain energy level of the plates. Robust optimization algorithms provided in the optimizer DOT are adopted to search the optimum thickness values during the optimization iteration. Finally, the square plate is used to find out the optimum thickness distribution of plates according to different essential boundary condition.

  • PDF

Effect of various processes on the evolution of through thickness strain states and textures in aluminum sheets (알루미늄 판재에서 두께층에 따른 변형율 상태와 집합조직의 발달에 미치는 다양한 공정의 영향)

  • Nah, J.J.;Kang, H.G;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.87-90
    • /
    • 2007
  • The evolution of texture and microstructure was tracked for a number of differently cold rolled aluminum sheet and through-thickness layers which were differentiated by different strain states upon preceding deformation. The results substantiate a correlation of deformation texture with the amount of shear applied during cold rolling.

  • PDF

Evaluation of The Effects of Fiber Grid Reinforcement on the Thickness Reduction of Asphalt Pavement (섬유 그리드를 이용한 아스팔트 포장 단면 감소 효과 분석)

  • Ham, Sang Min;Kim, Booil
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.43-48
    • /
    • 2017
  • PURPOSES : The purpose of this study is to verify the effects of fiber grid reinforcement on the thickness reduction of asphalt pavement. Test sections were constructed on the national highway to evaluate the structural capacity of asphalt pavement with the reinforced fiber grid and normal asphalt pavement. METHODS : Falling Weight Deflectometer (FWD) tests were performed to measure the structural capacity of test sections. The loads of the FWD test are 4.1 ton, 8.0 ton, 10.0 ton, and loaded twice, respectively. The test sections consist of a reference asphalt pavement section, an asphalt pavement section reduced with a 5-cm base layer thickness, and a fiber grid reinforced asphalt pavement section reduced with a 5-cm base layer thickness. In addition, strain data was collected using strain gauges installed in the test sections. RESULTS : The results of the FWD tests showed that the deflections of the pavement section reinforced with the fiber grid was reduced by about 14% compared with that of the reference asphalt pavement section. The strain at the bottom of the asphalt surface layer of the pavement section reduced to a 5-cm base thickness and reinforced with a fiber grid was similar to that at the bottom of the asphalt layer of the reference asphalt pavement. CONCLUSIONS : The results of the FWD and strain tests showed the possibility of the pavement thickness reduction by reinforcement with a fiber grid.

Elastic-Plastic Finite Element Analysis of Deep Drawings of Circular and Square Cups Considering Bending (굽힘을 고려한 원형 및 정사각형컵 딥드로잉 공정의 탄소성 유한요소해석)

  • 심현보;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1738-1750
    • /
    • 1994
  • Both cylindrical cup drawing and square cup drawing are analyzed using membrane analysis as well as shell analysis by the elastic-plastic finite element method. An incremental formulation incorporating the effect of large deformation and normal anisotropy is used for the analysis of elastic-plastic non-steady deformation. The computed results are compared with the existing experimental results to show the validity of the analysis. Comparisons are made in the punch load and distribution of thickness strain between the membrane analysis and the shell analysis for both cylindrical and square cup drawing processes. In punch load, both analyses show very little difference and also show generally good agreement with the experiment. For the cylindrical cup deep drawing, the computed thickness strain of a membrane analysis, however, shows a wide difference with the experiment. In the shell analysis, the thickness strain shows good agrement with the experiment. For the square cup deep drawing, both membrane and shell analyses show a wide difference with experiment, this may be attributable to the ignorance of the shear deformation. Concludingly, it has been shown that the membrane approach shows a limitation for the deep drawing process in which the effect of bending is not negligible and more exact information on the thickness strain distribution is required.

A new strain analysis model in epitaxial multilayer system (다층 구조에 대한 새로운 strain 해석 모델)

  • Jang, Dong-Hyeon;Sim, Jong-In
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2007.07a
    • /
    • pp.237-238
    • /
    • 2007
  • A new strain analysis model, so called the stress matched model, in an epitaxial multilayer system is proposed. The model makes it possible to know the strain, the stress, the elastic strain energy in each epitaxial layer. Analytical formulas of strain parameters in each epitaxial layer are derived under assumptions that the substrate thickness is finite and the in-plane lattice constant is the same for all epitaxial layers for dislocation free growth. As an example, the model is applied to a 405nm InGaN/InGaN multiple quantum well laser diode. Analysis result shows that AlxGa1-xN layer with Al mole fraction of 0.06 and the thickness of 6${\mu}m$ is one of good templates for a laser. In fact, this layer structure coincides with experimentally optimized one.

  • PDF

Evolution of Strain States and Microstructures During Three-roll Screw Rolling of Copper Rods (Three-roll Screw Rolling 공정 시 동봉재의 변형상태와 미세조직의 발달)

  • Kim, S.H.;Park, E.S.;Kim, H.J.;Bae, J.C.;Huh, M.Y.
    • Transactions of Materials Processing
    • /
    • v.17 no.1
    • /
    • pp.68-72
    • /
    • 2008
  • In order to investigate the evolution of strain states during screw rolling, the samples of copper rod were rolled in a three-roll screw rolling mill. Microstructure observations and hardness measurements were carried out for examining the deformation history during screw rolling. The finite element method(FEM) was employed to calculate the evolution of strain states during screw rolling. The strain state in the roll gap is quite inhomogeneous through the rod thickness layers. It turned out that shear strain gradients through the thickness layers are reduced by applying a higher reduction.

The effects of bone density and crestal cortical bone thickness on micromotion and peri-implant bone strain distribution in an immediately loaded implant: a nonlinear finite element analysis

  • Sugiura, Tsutomu;Yamamoto, Kazuhiko;Horita, Satoshi;Murakami, Kazuhiro;Tsutsumi, Sadami;Kirita, Tadaaki
    • Journal of Periodontal and Implant Science
    • /
    • v.46 no.3
    • /
    • pp.152-165
    • /
    • 2016
  • Purpose: This study investigated the effects of bone density and crestal cortical bone thickness at the implant-placement site on micromotion (relative displacement between the implant and bone) and the peri-implant bone strain distribution under immediate-loading conditions. Methods: A three-dimensional finite element model of the posterior mandible with an implant was constructed. Various bone parameters were simulated, including low or high cancellous bone density, low or high crestal cortical bone density, and crestal cortical bone thicknesses ranging from 0.5 to 2.5 mm. Delayed- and immediate-loading conditions were simulated. A buccolingual oblique load of 200 N was applied to the top of the abutment. Results: The maximum extent of micromotion was approximately $100{\mu}m$ in the low-density cancellous bone models, whereas it was under $30{\mu}m$ in the high-density cancellous bone models. Crestal cortical bone thickness significantly affected the maximum micromotion in the low-density cancellous bone models. The minimum principal strain in the peri-implant cortical bone was affected by the density of the crestal cortical bone and cancellous bone to the same degree for both delayed and immediate loading. In the low-density cancellous bone models under immediate loading, the minimum principal strain in the peri-implant cortical bone decreased with an increase in crestal cortical bone thickness. Conclusions: Cancellous bone density may be a critical factor for avoiding excessive micromotion in immediately loaded implants. Crestal cortical bone thickness significantly affected the maximum extent of micromotion and peri-implant bone strain in simulations of low-density cancellous bone under immediate loading.

Elastic wave phenomenon of nanobeams including thickness stretching effect

  • Eyvazian, Arameh;Zhang, Chunwei;Musharavati, Farayi;Khan, Afrasyab;Mohamed, Abdeliazim Mustafa
    • Advances in nano research
    • /
    • v.10 no.3
    • /
    • pp.271-280
    • /
    • 2021
  • The present work deals with an investigation on longitudinal wave propagation in nanobeams made of graphene sheets, for the first time. The nanobeam is modelled via a higher-order shear deformation theory accounts for both higher-order and thickness stretching terms. The general nonlocal strain gradient theory including nonlocality and strain gradient characteristics of size-dependency in order is used to examine the small-scale effects. This model has three-small scale coefficients in which two of them are for nonlocality and one of them applied for gradient effects. Hamilton supposition is applied to obtain the governing motion equation which is solved using a harmonic solution procedure. It is indicated that the longitudinal wave characteristics of the nanobeams are significantly influenced by the nonlocal parameters and strain gradient parameter. It is shown that higher nonlocal parameter is more efficient than lower nonlocal parameter to change longitudinal phase velocities, while the strain gradient parameter is the determining factor for their efficiency on the results.