• Title/Summary/Keyword: Thickness of eutectic layer

Search Result 24, Processing Time 0.022 seconds

Fabrication, Microstructure and Adhesion Properties of BCuP-5 Filler Metal/Ag Plate Clad Material by Using High Velocity Oxygen Fuel Thermal Spray Process (고속 화염 용사 공정을 이용한 스위칭 소자용 BCuP-5 filler 금속/Ag 기판 클래드 소재의 제조, 미세조직 및 접합 특성)

  • Joo, Yeun A;Cho, Yong-Hoon;Park, Jae-Sung;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.226-232
    • /
    • 2022
  • In this study, a new manufacturing process for a multilayer-clad electrical contact material is suggested. A thin and dense BCuP-5 (Cu-15Ag-5P filler metal) coating layer is fabricated on a Ag plate using a high-velocity oxygen-fuel (HVOF) process. Subsequently, the microstructure and bonding properties of the HVOF BCuP-5 coating layer are evaluated. The thickness of the HVOF BCuP-5 coating layer is determined as 34.8 ㎛, and the surface fluctuation is measured as approximately 3.2 ㎛. The microstructure of the coating layer is composed of Cu, Ag, and Cu-Ag-Cu3P ternary eutectic phases, similar to the initial BCuP-5 powder feedstock. The average hardness of the coating layer is 154.6 HV, which is confirmed to be higher than that of the conventional BCuP-5 alloy. The pull-off strength of the Ag/BCup-5 layer is determined as 21.6 MPa. Thus, the possibility of manufacturing a multilayer-clad electrical contact material using the HVOF process is also discussed.

Behavior of Vibration Fracture for Sn-Ag-Cu-X Solders by Soldering (Sn-Ag-Cu-X 무연솔더로 솔더링 된 접합부의 진동파괴 거동)

  • Jin, Sang-Hun;Kang, Nam-Hyun;Cho, Kyung-Mox;Lee, Chang-Woo;Hong, Won-Sik
    • Journal of Welding and Joining
    • /
    • v.30 no.2
    • /
    • pp.65-69
    • /
    • 2012
  • Environmental and health concerns over the lead have led to investigation of the alternative Pb-free solders to replace commonly used Pb-Sn solders in microelectronic packaging application. The leading candidates for lead-free solder alloys are presently the near eutectic Sn-Ag-Cu alloys. Therefore, extensive studies on reliability related with the composition have been reported. However, the insufficient drop property of the near eutectic Sn-Ag-Cu alloys has demanded solder compositions of low Ag content. In addition, the solder interconnections in automobile applications like a smart box require significantly improved vibration resistance. Therefore, this study investigated the effect of alloying elements (Ag, Bi, In) on the vibration fatigue strength. The vibration fatigue was conducted in 10~1000Hz frequency and 20Grms. The interface of the as-soldered cross section close to the Cu pad indicated the intermetallic compound ($Cu_6Sn_5$) regardless of solder composition. The type and thickness of IMC was not significantly changed after the vibration test. It indicates that no thermal activities occurred significantly during vibration. Furthermore, as a function of alloying composition, the vibration crack path was investigated with a focus on the IMCs. Vibration crack was initiated from the fillet surface of the heel for QFP parts and from the plating layer of chip parts. Regardless of the solder composition, the crack during a vibration test was propagated as same as that during a thermal fatigue test.

Formation and Progression of Intermetallic phase on Iron Base Alloy PTA weld overlay in Molten Zn Alloys (용융 Zn 합금에서 Fe합금의 PTA 오버레이 용접 금속간 상의 형성과 진행)

  • Zulkarnain, Zulkarnain;Baek, E.R.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.95-95
    • /
    • 2009
  • Zinc coatings provide the most effective and economical way of protecting steel against corrosion. There are three types of galvanizing lines typically used in production line in galvanizing industries,Galvanize (GI) coating (Zn-0.1-0.3%Al), Galfan coating (Zn-5%Al), Galvalume(GL) coating (45%Zn-Al). In continuous Galvanizing lines, the immersed bath hardware (e.g. bearings, sink, stabilizer, and corrector rolls, and also support roll arms and snout tip) are subjected to corrosion and wear failure. Understanding the reaction of these materials with the molten Zn alloy is becomes scientific and commercial interest. To investigate the reaction with molten Zn alloys, static immersion test performed for 4, 8, 16, and 24 Hr. Two different baths used for the static immersion, which are molten Zn and molten Zn-55%Al. Microstructures characterization of each of the materials and intermetallic layer formed in the reaction zone was performed using optical microscope, SEM and EDS. The thickness of the reaction layer is examined using image analysis to determine the kinetics of the reaction. The phase dominated by two distinct phase which are eutectic carbide and matrix. The morphology of the intermetallic phase formed by molten Zn is discrete phase showing high dissolution of the material, and the intermetallic phase formed by Zn-55wt%Al is continuous. Aluminum reacts readily with the materials compare to Zinc, forming iron aluminide intermetallic layer ($Fe_2Al_5$) at the interface and leaving zinc behind.

  • PDF

Reaction Characteristics between In-l5Pb-5Ag Solder and Au/Ni Surface Finish and Reliability Evaluation of Solder Joint (In-l5Pb-5Ag 솔더와 Au/Ni Surface Finish와의 반응 특성 및 접합 신뢰성 평가)

  • 이종현;엄용성;최광성;최병석;윤호경;박흥우;문종태
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • The metallurgical reaction properties between the pad consisted of 0.5 $\mu\textrm{m}$Au/5 $\mu\textrm{m}$Ni/Cu layers on a conventional ball grid array (BGA) substrate and In-15 (wt.%)Pb-5Ag solder ball were characterized during the reflow process and solid aging. During the reflow process of 1 to 5 minutes, it was observed that thin $AuIn_2$ or Ni-In intermetallic layer was formed at the interface of solder/pad. The dissolution rate of the Au layer into the molten solder was about $2\times 10^{-3}$ $\mu\textrm{m}$/sec which is remarkably low in comparison with a eutectic Sn-37Pb solder. After solid aging treatment for 500 hrs at $130^{\circ}C$, the thickness of $Ni_{28}In_{72}$ intermetallic layer was increased to about 3 $\mu\textrm{m}$ in all the conditions nevertheless the initial reflow time was different. These result show that In atoms in the solder alloy were diffused through the $AuIn_2$ phase to react with underlaying Ni layer during solid aging treatment. From the microstructural observation and shear tests, the reaction properties between In-15Pb-5Ag alloy and Au/Ni surface finish were analyzed not to trigger Au-embrittlement in the solder joints unlike Sn-37Pb composition.

  • PDF