• Title/Summary/Keyword: Thickness measurement

Search Result 1,834, Processing Time 0.041 seconds

Laver(Kim) Thickness Measurement and Control System Design (해태(김)두께측정 및 조절 장치 설계)

  • Lee, Bae-Kyu;Choi, Young-Il;Kim, Jung-Hwa
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.226-233
    • /
    • 2013
  • In this study, In Laver's automatic drying device, laver thickness measurement and control devices that are associated with. Disconnect the water and steam, after put a certain amount of the mixture(water and laver) in the mold. In process, Laver of the size and thickness (weight) to determine, constant light source to detect and image LED Lamp occur Vision Sensor (Camera) prepare, then the values of these state of the image is transmitted in real time embedded computers. Built-in measurement and control with the purpose of the application of each of the channels separately provided measurements are displayed on a monitor, And servo signals sent to each of the channels and it become so set function should be. In this paper, the laver drying device, prior to the laver thickness measurement and control devices that rely on the experience of existing workers directly laver manually adjust the thickness of the lever, but the lever by each channel relative to the actuator by installing was to improve the quality. In addition, The effect of productivity gains and labor savings are.

Thickness Measurement of Adhesive Layer of Multilayer Using Power Cepstrum Technique (전력 켑스트럼 기법을 이용한 다층구조물 접착면의 두께측정)

  • Shin, Jin-Seob;Jun, Kye-Suk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.26-30
    • /
    • 1997
  • In this paper, the thickness measurement method of adhesive layers of multilayers using power cepstrum signal processing technique has been proposed. The peak values for reflected signal from each layer have been separated by power cepstrum technique. Therefore, thickness of adhesive layers have been measured by the intervals of peak signal. In the experiment, the adhesive layers of 0.5mm-0.75mm thickness using epoxy(2-Ton and Plastic Steel Putty(A)) between the aluminum and the brass were formed. The adhesive layer thickness which is calculated with data of reflected signal by ultrasonic pulse-echo method was within error 1.34% of the measured values.

  • PDF

Total Body Fat Measurement of Middle School Girls in Suwon, Kyungido, Korea (수원지역 여자 중학생의 총지방량 측정)

  • Choi, Duck-Kyung;Lee, Jeoung-Ku;Pyun, Kyung-Sik
    • The Korean Journal of Physiology
    • /
    • v.9 no.1
    • /
    • pp.63-68
    • /
    • 1975
  • Total body fat measurement by means of skinfold thickness was performed in 295 middle school girls in Suwon, Korea. Skinfold thicknesses on 4 sites, namely, arm, back, abdomen, and waist were obtained and fat was calculated using mean skinfold thickness (MSF) and the following formulas. % Fat=0.747$\times$MSF (mm)+l6.21 Fat (kg) =0.619$\times$MSF (mm) +3.31. The following results were obtained. 1. In 85 (age. 13 yr) of the first year class girls skinfold thickness was: arm 6.9mm; back 8.2; abdomen 8.3; waist 10.7mm, mean thickness was 8.5mm. Fat was 22.6$\pm$1.56% body weight or 8.20±2.68kg. Lean body weight was 31.93$\pm$3.16kg. 2. In 107 (age : 14.2 yr) of the second year class girls skinfold thickness was : arm 7.6mm; back 9.7; abdomen 9.7; waist 12.4mm; and mean thickness was 9.8mm. Fat was 23.0$\pm$5.09% body weight or 9.36$\pm$1.87kg. Lean body weight was 34.29$\pm$1.76 kg. 3. In 103 (age : 15.1 yr) of the third year class girls skinfold thickness was : arm 7.6mm; back 10.3; abdomen 9.4; waist 11.9mm; and mean thickness was 9.8mm. Fat was 23.2$\pm$4.35% body weight or 9.36$\pm$1.18 kg. Lean body weight was 37.10$\pm$5.08 kg. 4. The ratio of mean skinfold thickness (mm) to body weight (kg) was 0.213 in 13 year old girls, 0.225 in 14 year, and 0.213 in 15 year old girls.

  • PDF

Cortical and cancellous bone thickness on the anterior region of alveolar bone in Korean: a study of dentate human cadavers

  • Kim, Heung-Joong;Yu, Sun-Kyoung;Lee, Myoung-Hwa;Lee, Hoon-Jae;Kim, Hee-Jung;Chung, Chae-Heon
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.3
    • /
    • pp.146-152
    • /
    • 2012
  • PURPOSE. The cortical bone thickness on the anterior region is important for achieving implant stability. The purpose of this study was to examine the thickness of the cortical and cancellous bones on the anterior region of the maxilla and mandible. MATERIALS AND METHODS. Twenty-five cadaver heads were used (16 male and 9 female; mean death age, 56.7 years). After the long axis of alveolar process was set up, it was measured in 5 levels starting from 2 mm below the cementoenamel junction (L1) at intervals of 3 mm. All data was analysed statistically by one-way ANOVA at the .05 significance level. RESULTS. The cortical bone thickness according to measurement levels in both the labial and lingual sides increased from L1 to L5, and the lingual side below L3 was significantly thicker than the labial side on the maxilla and mandible. In particular, the labial cortical bone thickness in the maxilla was the thinnest compared to the other regions. The cancellous bone thickness according to measurement levels increased from L1 to L5 on the maxilla, and on the mandible it was the thinnest at the middle level of the root. CONCLUSION. For implant placement on the anterior region, a careful evaluation and full knowledge on the thickness of the cortical and cancellous bone are necessary, therefore, these results may provide an anatomic guideline to clinicians.

Steel Probing in Concrete Using Steel Corrosion Surface Measurement Method Modeling (철근부식 표면측정법 모델링을 통한 콘크리트 내 철근 탐사)

  • Rhim, Hong-Chul;Ma, Hyang-Hwa;Lee, Suk-Yong;Lee, Kun-Woo;Oh, Jin-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.153-158
    • /
    • 2009
  • Using non-invasive surface measurement method, the corrosion state of steel embedded inside concrete can be measured by placing four electrodes on the surface of concrete. Modeling of such measurements can provide valuable information as how interfacial impedance between corroded steel and surrounding concrete results in measured impedance on the concrete surface. In this paper, the modeling of surface measurement technique is used for the determination of the sensitivity of the measurements with respect to steel bar size embedded inside concrete and cover thickness. Modeling results indicated that steel bar sizes varied from D10 to D35 could be identified. Concrete cover thickness changes from 0.02 m to 0.1 m was also distinguished using the modeling scheme. The results confirm this modeling technique is capable of determining steel bar sizes and cover thickness, as well as simulating corrosion responses.

Measurment of Gold Coating Thickness by PIXE (양성자 유발 X-선 발생법에 의한 금 박막의 두께 측정)

  • Kim, N.B.;Woo, H.J.;Kim, Y.S.;Kim, D.K.;Kim, J.K.;Choi, H.W.;Park, K.S.
    • Analytical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.471-476
    • /
    • 1994
  • The capability of PIXE (Proton Induced X-ray Emission) method for the precision measurement of coating thickness has been tested by measuring several gold coated copper plates. Two different experimental methods are applied and compared. The results are compared with those by the weight measurement and proton RBS (Rutherford Backscattering Spectrometry). The advantage of the method is that it can be also used for the nondestructive thickness measurement of this layers on large-scaled samples or archeological samples which cannot be placed in a vacuum chamber.

  • PDF

Reliability study of the Pectoralis Minor Muscle Thickness Measurement using Rehabilitative Ultrasound Imaging

  • Lim, Ji Young;Lee, Se-Yeong;Jung, Seung-Hwa;Park, Dae-Sung
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.2
    • /
    • pp.45-52
    • /
    • 2021
  • PURPOSE: This study examined the imaging procedure of pectoralis minor muscle thickness and assessed the intra- and inter-rater reliability of the muscle thickness measured by two raters using rehabilitative ultrasound imaging (RUSI) in healthy individuals. METHODS: Fifteen participants (aged 21 - 28, seven females, and eight males) were involved in the study. The primary rater palpated the coracoid process and the fourth rib, defined as the width of the index finger lateral to the sternum to avoid breast tissues, and lined the two landmarks. The second examiner checked 1 / 3 (1st point) and 1 / 2 (2nd point) of the line length as measurement points. The two raters obtained right side muscle images of the participants at a standardized sitting position using RUSI with a 7.5 MHz linear transducer at 40mm depth. For intra-rater reliability, the principal rater took three images per point and tried to take one more with an interval. For the inter-rater reliability, the other rater performed the same tasks as the principal rater on the same day. The reliability was analyzed using the intra-class correlation coefficient (ICC), the standard error of the measurement (SEM), and Bland and Altman plots. RESULTS: The reliability at all points was excellent for the same rater (ICC3,1 = .973 - .978, SEM = .042 - .046), and between raters (ICC2,1 = .939 - .959, SEM = .059 - .097). CONCLUSION: These findings show that the RUSI could be reliable for examining the pectoralis minor muscle thickness in healthy individuals at all measurement sites.

A Study on Coating Film Thickness Measurement in vehicle Using Eddy Current Coil Sensor (와전류 코일 센서를 통한 차량용 코팅막 측정에 관한 연구)

  • Park, Hwa-Beom;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1131-1138
    • /
    • 2019
  • The importance of coatings has been increasing for different purposes such as prevention of static electricity of auto parts or products, improvement of abrasion and corrosion resistance, and enhancement of esthetics. As a method for measuring the thickness of a coating film, a contact method with probe is commonly used. However, it is problematic that accuracy of the sensor is degraded due to sensor output distortion or load phenomenon, which is caused by a change in magnetic permeability of the core. In this study, we propose a method to reduce the measurement error of the coating film by applying the optimized circuit design and the thickness measurement algorithm to the problems caused by the nonlinear characteristics. The tests result which have been taken with different thickness coating samples show that the measurement accuracy is within ${\pm}2%$.

Analysis of Counting Rate according to Presence or Absence of Detector's Protector in Beta-rays Measurement using Geiger-Muller Counter (Geiger-Muller 계수관을 이용한 베타선측정에서 디텍터 보호유무에 따른 계수율 분석)

  • Jang, Ji-Yong;Jeong, Moon-Taeg;Song, Jong-Nam;Ha, Jae-Jun;Han, Jae-Bok
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.1
    • /
    • pp.31-37
    • /
    • 2018
  • In the surface contamination test using the end-window Geiger-Muller type counter, the wrap is used as a method for protecting the detector exposed to the outside in order to measure the beta-rays. We analyze the effect of this method on the measurement rate and the correction factor, and wanted to make it clear to radiation workers that excessive use of the wrap can affect the measured value of the beta-rays. The experimental method was to compare and analyze the change of the beta-rays measurement counting rate and the calibration factor according to the wrap thickness using the beta-rays with different energy of 3 KBq, 1.5 KBq and 0.3 KBq. The subjects of this study were the end-window Geiger-Muller type counter which were held at the calibration center certified by Korea Laboratory Accreditation Scheme (KOLAS) in March 2012, Cl-36 (Chlorine) and Sr-90 (Strontium) were used as the source of beta radiation. The measurement counting rate decreased with increasing wrap thickness, and the calibration factor increased with increasing wrap thickness. Since the changes of the measurement counting rate and the calibration factors can reduce the accuracy of the instrument readings, but also have a significant impact on detector contamination and damage, so there is a need to find out what thickness of wrap is most effective. If we using a wraps with thickness that show a low rate of change of the measurement counting rate and the calibration factor, it will protect the detector and minimize the effect on the measured value of the beta-rays.