• Title/Summary/Keyword: Thickness Measurement Error

Search Result 126, Processing Time 0.034 seconds

The Reliability of Thickness Measurement of the Deep Fiber of the Lumbar Multifidus Using Ultrasonography

  • Jung, Doh-Heon;Kim, Su-Jung;Yi, Chung-Hwi;Cynn, Heon-Seock;Choi, Houng-Sik
    • Physical Therapy Korea
    • /
    • v.17 no.4
    • /
    • pp.49-54
    • /
    • 2010
  • The reliability of the thickness measurement of the lumbar multifidus (LMD using real-time ultrasonography (US) was determined in only the superficial fiber of the lumbar multifidus (SM). However, previous studies have not examined the reliability of the deep fiber of the LM (DM). The purpose of this study was to determine the intrarater and the interrater reliability of the thickness measurements of DM using US. Eleven heathy males participated in the study. The thickness of the DM was measured with an US in the prone position. Reliability was examined using intraclass correlation coefficients (ICC), standard error of the measurement (SEM), and the Bland and Altman plot. ICC(3,1) was used to calculate the interrater reliability of the thickness measurement of DM using the values from both the first and second test sessions. Additionally, ICC(3,1) was used to calculate the intrarater reliability of the measurements over two days using the measurements obtained in test session 1 and lest session 2. The results of this study were as follows: 1) the ICC(3,1) value for interrater reliability was .94 in the first test session, and .93 in the second test session. 2) the ICC(3,1) values for intrarater reliability of the measurements over two days was .90 in both the first examiner and the second examiner. The interrater reliability and interrater reliability of the DM measurements, obtained via the US protocol used in this research was excellent. Therefore, we conclude that the thickness measurement of the DM obtaioned from the US protocol used in this research would be useful for clinician assessment of the thickness of the DM.

A Study on the Shape Measurement of Glass in the Back Light Unit(BLU) (BLU의 Glass 형상 측정 연구)

  • Oh, Choonsuk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.211-218
    • /
    • 2019
  • All display devices require more wider, higher resolution and precision owing to advanced display technology. As the display pannels become wider, BLU also become wider and brighter. The upper glass of the BLU must achieve the constant of its shape and thickness and have uniform brightness. These deformity cause the display quality to make less. Thus high performance of the BLU shape's height and thickness measurement is inevitable. The high speed and precision measurement system will be proposed. To minimize the measurement error we can achieve the desirous results by 2 dividing intervals with different moving velocity on measuring.

Development of Thickness Measurement Method From Concrete Slab Using Ground Penetrating Radar (GPR 기반 콘크리트 슬래브 시공 두께 검측 기법 개발)

  • Lee, Taemin;Kang, Minju;Choi, Minseo;Jung, Sun-Eung;Choi, Hajin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.39-47
    • /
    • 2022
  • In this paper, we proposed a thickness measurement method of concrete slab using GPR, and the verification of the suggested algorithm was carried out through real-scale experiment. The thickness measurement algorithm developed in this study is to set the relative dielectric constant based on the unique shape of parabola, and time series data can be converted to thickness information. GPR scanning were conducted in four types of slab structure for noise reduction, including finishing mortar, autoclaved lightweight concrete, and noise damping layer. The thickness obtained by GPR was compared with Boring data, and the average error was 1.95 mm. In order to investigate the effect of finishing materials on the slab, additional three types of finishing materials were placed, and the following average error was 1.70 mm. In addition, sampling interval from device, the effect of radius on the shape of parabola, and Boring error were comprehensively discussed. Based on the experimental verification, GPR scanning and the suggested algorithm have a great potential that they can be applied to the thickness measurement of finishing mortar from concrete slab with high accuracy.

Correlation of Refractive Error, Axial Length, Chamber Depth, Lens Thickness and Corneal Thickness of Normal University Students (정상 대학생의 눈 굴절이상, 안축장, 전방깊이, 수정체두께 그리고 각막두께의 연관성)

  • Kim, Chang-Sik;Lee, Hak-Jun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.1
    • /
    • pp.89-94
    • /
    • 2008
  • Purpose: To make a comparative study of correlation between biometry data of size in eyeball and refractive error. Methods: The subjects were 68 normal university students (male 36, female 32) and the average age was 22.85${\pm}$3.12. We measured the students' eyesight by A-scan ultrasound and refractor. The results were examined it's statistical significance by SPSS 12.0 version. Results: The mean of axial length was 24.31${\pm}$1.24 mm, chamber depth was 3.48${\pm}$0.28 mm, lens thickness was 3.56${\pm}$0.26 mm and corneal thickness was 0.55${\pm}$0.03 mm. Male's Axial length and chamber depth were larger than female's. As reflective error decreases the thickness of lens become thicker. The measurement data between right eye and left eye didn't had difference and there was no correlation with result of T-test. There were statistically significant correlation with length and chamber depth, axial length and corneal thickness, chamber depth and corneal thickness, and refractive error and lens thickness (p<0.01). Refractive error and axial length were minus linear regression (r=-0.56). Conclusions: Eye's refractive error was changed by axial length, chamber depth and lens thickness but it wasn't related with sex and whether it is a right eye or a left eye.

  • PDF

The Study of Asymmetrical of the Serratus Anterior and Lower Trapezius Muscles in Chronic Stroke Patients (만성 뇌졸중 환자의 앞 톱니근과 하부 등세모근의 비대칭성 연구)

  • Jeong, Ju-Ri;Lee, Wan-Hee
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.10 no.4
    • /
    • pp.81-90
    • /
    • 2015
  • PURPOSE: The purpose of this study was to compare the muscle architecture of serratus anterior and lower trapezius using rehabilitative ultrasound imaging (RUSI) in affected and unaffected side of chronic stroke patients. METHODS: The participants were thirty five patients with stroke hemiplegia in this study. RUSI was used to measure the muscle thickness of the serratus anterior and lower trapezius muscles. We compared the muscle thickness according to affected side and sex, determined the reliability of the measurement image. Independent t-test, intra-class correlation coefficient (ICC) and standard error of measurement (SEM) were used for statistical analysis. RESULTS: Significant difference in muscle thickness of serratus anterior was observed between affected and unaffected side (p<.001). Muscle thickness according to gender showed a significant difference in unaffected side of serratus anterior (p<.05). Compare asymmetry ratio of serratus anterior and lower trapezius muscle thickness showed a significant difference (p<.001). ICC for intra-reliability was .944~.962 in serratus anterior and .873~.925 in lower trapezius muscle thickness, respectively. SEM was .001~.004 in serratus anterior and .002~.008 in lower trapezius muscle. CONCLUSION: This study, using RUSI, showed significant difference in muscle thickness of serratus anterior in affected and unaffected side of stroke patients. RUSI is a practical tool for measuring soft-tissue thickness in the scapular region muscle of stroke.

Transparent Plate Thickness Measurement Approach Using a Chromatic Confocal Sensor Based on a Geometric Phase Lens (기하 위상 렌즈 기반의 색공초점 센서를 이용한 투명 물질 두께 측정 연구)

  • Song, Min Kwan;Park, Hyo Mi;Joo, Ki-Nam
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.6
    • /
    • pp.317-323
    • /
    • 2022
  • In this investigation, we describe a chromatic confocal sensor based on a geometric phase lens for measuring the thicknesses of transparent plates. In order to design a compact sensor, a geometric phase lens, which has diffractive and polarizing characteristics, is used as a device to generate chromatic aberration, and a fiber optic module is adopted. The systematic error of the sensor is reduced with wavelength peak detection by Gaussian curve fitting and the common error compensation obtained by the repeatedly consecutive experimental results. An approach to calculate the plate thickness is derived and verified with sapphire and BK7 plates. Because of the simple and compact design of the proposed sensor with rapid measurement capability, it is expected to be widely used in thickness measurements of transparent plates as an alternative to traditional approaches.

A Study on the Reliability of an Ultrasonic Measurement Device(SDM) (연조직두께 측정기구(SDM)의 재현성에 관한 연구)

  • Chang, Moon-Taek;Kim, Hyung-Seop;Lee, Kwang-Won
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.2
    • /
    • pp.483-490
    • /
    • 2000
  • The aim of this study was to analyze the reliability of an ultrasonic device(SDM) measuring soft tissue thickness in relation to tooth position, and to find factors which can influence the reliability. The results showed that 1. measurement error was the largest in the maxillary second molar position and the smallest in the mandibular central incisor position. 2. in a box whisker plot, the difference between two measurements was most widely distributed in molar positions. 3. in Pearson correlation analysis, the relationship between two measurements was the highest in the maxillary lateral incisor position and, the lowest in the maxillary second molar, mandibular first and second premolar position. 4. a stepwise multiple regression analysis could explain the difference of two measurements with various independent variables in 29.7% (P<0.0001). Gingival thickness was the only variable influencing the measurement difference in a statistically significant level(P<0.0001). It can be concluded that its high reliability, ease to use and patient comfort justified the application of the SDM in measurement of soft tissue thickness.

  • PDF

Intra and Inter-Rater Measurement Reliability of Tibialis Anterior Muscle (TA) Thickness using the Ultrasonography Spring Gauge Technique

  • Hwang, Byeong-Hun;Jang, Tae-Jin;Jeon, In-Cheol
    • The Journal of Korean Physical Therapy
    • /
    • v.33 no.4
    • /
    • pp.187-192
    • /
    • 2021
  • Purpose: The purpose of the current study was to determine the intra- and inter-rater reliability of muscle thickness measurement of the TA using ultrasonography (US) conducted at different inward pressures of approximately 0.5 kg, 1.0 kg, and no pressure control. Methods: Twenty healthy subjects were recruited for this study. Two different examiners measured the thicknesses of the dominant TA of each subject randomly to assess the intra- and inter-rater reliability. The measurement values were analyzed using the intra-class correlation coefficient (ICC) with a 95% confidence interval, standard error of measurement, minimal detectable change, and coefficient of variance. Results: All intra-rater reliability ICC values showed high reliability above 0.9. Inter-rater reliability ICC values showed high reliability above 0.9 with 0.5 and 1.0 kg of inward pressure. In contrast, Inter-rater reliability ICC values showed poor reliability (0.23) with no pressure control of inward pressure. Conclusion: The findings showed that maintaining consistent inward pressure is essential for reliable results when the muscle thickness of the TA is measured by different examiners in a clinical setting.

Developement of a System for Glass Thickness Measurement (비접촉 유리 두께 측정 장치 개발)

  • Park, Jae-Beom;Lee, Eung-Suk;Lee, Min-Ki;Lee, Jong-Gun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.529-535
    • /
    • 2009
  • This paper describes a measuring device of glass thickness using machine vision and image processing techniques on real-time. Today, the machine vision enable to inspect fast and exactly than human's eyes. The presented system has advantages of continuous measurement, flexibility and good accuracy. The system consists of a laser diode, a CCD camera with PC. The camera located on the opposite side of the incident beam measures the distance between two reflected laser beams from the glass top and bottom surface. We apply a binary algorithm to convert and analyze the image from camera to PC. Laser point coordination by border tracing algorithm is used to find the center of beam circle. The measured result was compared with micrometer and showed 0.002mm accuracy. Finally, the errors were discussed how to minimize the influence of glass wedge angle and angular error of moving stage.

Measurement and Analysis of Liquid Film Thickness of Pressure-Swirl Spray for Direct-Injection Gasoline-Engines (직접분사식 가솔린엔진용 고압 스월분무의 액막두께 측정 및 해석)

  • Moon, Seok-Su;Abo-Serie, Essam;Oh, Hee-Chang;Bae, Choong-Sik
    • Journal of ILASS-Korea
    • /
    • v.12 no.4
    • /
    • pp.211-219
    • /
    • 2007
  • The liquid film thickness inside a pressure-swirl nozzle was measured, and then the measured liquid film thickness was compared with the results from previous empirical equations. The liquid film inside the nozzle was visualized using extended transparent nozzles and a microscopic imaging system, and then the measurement error was evaluated using optical geometry analysis. The high injection pressures up to 7MPa were adopted to simulate the injection conditions of the direct-injection spark-ignition engines. The totally different two injectors with different fuels, nozzle lengths, nozzle diameters and swirlers were utilized to obtain the comprehensive equations. The results showed that the liquid film thickness very slightly decreased at high injection pressures and the empirical equations overestimated the effect of injection pressure. Most of empirical equations did not include the effect of nozzle length and swirler angle, although it caused significant change in liquid film thickness. A new empirical equation was suggested based on the experimental results with the effects of fuel properties, injection pressure, nozzle diameter, nozzle length and swirler angle.

  • PDF