• Title/Summary/Keyword: Thick steel plates

Search Result 126, Processing Time 0.023 seconds

The Characteristics of Butt Welding Nd:YAG Laser with a Continuous Wave of Nickel Coated S45C Steel (니켈도금된 S45C강의 연속파 Nd:YAG 레이저 맞대기 용접 특성)

  • Mo, Yang-Woo;Shin, Ho-Jun;Shin, Byung-Heon;Yoo, Young-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.1-12
    • /
    • 2007
  • S45C steel has been widely used in industrial applications, such as crank shafts, gears, main spindles of machine tools, connecting rods, etc., because of its distinguished mechanical property. In the convention arc welding of S45C plates without heat treatments, it is possible for welding defects to take place, such as a void or a hot-crack, due to a high carbon composition of S45C. Laser welding process is widely used in the industrial field due to its numerous advantages: a small heat affected zone(HAZ), deep penetration, high welding speed, single-pass thick section capability, and small distortion after welding. The objective of this research works is to investigate the influence of the process parameters, such as power of laser and welding speed, on the characteristics of laser welding for the case of nickel coated and nickel uncoated S45C steel. As the result of the experiment, in case of butt welding, nickel coated S45C steel has a uniform formation of welding zone and it was judged that the welding nature was better as inner defects and the quantity of spatter were formed relatively fewer than nickel uncoated S45C steel.

Noise reduction of a vehicle acoustic cavity sample using coupled Structural-Acoustic element analysis (구조-음향 연성해석을 통한 모형차실 모델의 소음저감 기술연구)

  • 김태정;강성종;서정범
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.288-294
    • /
    • 1994
  • A study of prediction and qualification techniques for structure borne booming noise is presented in this paper. Result from acoustic normal mode finite element analysis of a 1/2 size vehicle cavity sample model is compared to the that from an experiment. Coupled structural-acoustic analysis is performed on a 1/4 size vehicle cavity sample model surrounded by 2 mm thick normal steel plates. Interior noise levels around passensger's ear position are predicted and reduced by structural modification based on panel participation factor analysis about the sample cavity model. Futhermore, optimization technique in application of anti-vibration pad is studied.

  • PDF

Prediction on the fatigue life of butt-welded specimens using artificial neural network

  • Kim, Kyoung Nam;Lee, Seong Haeng;Jung, Kyoung Sup
    • Steel and Composite Structures
    • /
    • v.9 no.6
    • /
    • pp.557-568
    • /
    • 2009
  • Fatigue tests for extremely thick plates require a great deal of manufacturing time and are expensive to perform. Therefore, if predictions could be made through simulation models such as an artificial neural network (ANN), manufacturing time and costs could be greatly reduced. In order to verify the effects of fatigue strength depending on the various factors in SM520C-TMC steels, this study constructed an ANN and conducted the learning process using the parameters of calculated stress concentration factor, thickness and input heat energy, etc. The results showed that the ANN could be applied to the prediction of fatigue life.

Hardness prediction based on microstructure evolution and residual stress evaluation during high tensile thick plate butt welding

  • Zhou, Hong;Zhang, Qingya;Yi, Bin;Wang, Jiangchao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.146-156
    • /
    • 2020
  • Two High Tensile Strength Steel (EH47) plates with thickness of 70 mm were butt-welded together by multi-pass Submerged Arc Welding (SAW), also the hardness and welding residual stress were investigated experimentally. Based on Thermal-Elastic-Plastic Finite Element (TEP FE) computation, the thermal cycles during entire welding process were obtained, and the HAZ hardness of multi-pass butt welded joint was computed by the hardenability algorithm with considering microstructure evolution. Good agreement of HAZ hardness between the measurement and computational result is observed. The evolution of each phase was drawn to clarify the influence mechanism of thermal cycle on HAZ hardness. Welding residual stress was predicted with considering mechanical response, which was dominantly determined by last cap welds through analyzing its formation process.

A hybrid cutting technology using plasma and end mill for decommissioning of nuclear facilities

  • Choi, Min-Gyu;Lee, Dong-Hyun;Jeong, Sang-Min;Figuera-Michal, Darian;Seo, Jun-Ho
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1145-1151
    • /
    • 2022
  • A hybrid cutting using both plasma and end mill was developed for safe and efficient dismantling of nuclear facilities. In this cutting method, a moving arc plasma heats up the workpiece before milling. Thermally softened part of the workpiece is then removed quickly and deeply with an end mill. For the cutting experiments, a three-axis numerical control (NC) milling machine was combined with a commercialized arc plasma torch and used to cut 25 mm thick stainless steel plates. Experimental results revealed that pre-heating by arc plasmas can improve the cutting volume per unit time higher than 40% by reducing the cutting load and increasing the cuttable depth when using an end mill without cutting fluids. These advantages of a hybrid cutting process are expected to contribute to quick and safe segmentations of metal structures with radioactively contaminated inner surfaces.

Residual Stress Measurement on T-type Welded Specimen by Neutron Diffraction

  • Jang, D.Y.;Park, M.J.;Choi, H.D.;Kim, J.P.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.2
    • /
    • pp.45-50
    • /
    • 2001
  • This paper presents application of neutron diffraction technique to the measurement of residual stresses in the T-type 20 m thick welded stainless steel plates(100$\times$50 $mm^2$ and 50$\times$50 $mm^2$). The High Resolution Powder Diffractormeter of the Korea Atomic Research Institute was utilized in the measurement. The power of nuclear reactor was 24 MWt and the measured reflection in the 220 plane (2$\theta$)was $92.66^{\circ}$. Poisson ratio of 0.265 and elastic constant of 211 GPa were applied to the calculation of stresses and strains. Three directional components such as normal, transverse, and longitudinal stresses were measured. The results showed that three components were tensile and became compressive along the y axis in the zone away from the welded center. The compressive stresses became tensile in the zone away from the center line of x axis. This may be due to the balance effect caused by the net stress to keep the specimen shape flat.

  • PDF

A Study on Remote CO2 Laser Welding for the Development of Automobive Parts (차체부품 개발을 위한 원격 CO2 레이저 용접에 관한 연구)

  • Song, Mun-Jong;Lee, Gyu-Hyun;Lee, Mun-Yong;Kim, Sok-Won
    • Journal of Welding and Joining
    • /
    • v.28 no.5
    • /
    • pp.75-79
    • /
    • 2010
  • The Remote welding system(RWS) using $CO_2$ laser equipment has focusable distance of laser beam longer than 800 mm from workpiece and can deflect the laser beam by the scanner mirrors very rapidly. In the case of normal welding system based on robot, there is a limit to move the shortest path in short time and this causes interference between robot and workpiece. On the other hand, RWS is the optimized equipment to get big merits with advanced sequence of welding and short cycle time. However, there is still a pending task such as the control of plasma in the welding process of thick sheets therefore, it requires high power laser beam because of the absence of assist gas equipment in itself. In this study, high-tensile steel plates were overlap welded with $CO_2$ RWS for the production of car body and the influence of penetration depth according to the existence of assist gas was analyzed. Excellent tensile strength with enough width of molten zone independent to penetration depth was observed under welding condition with 3.6 kW laser power and 2.8 m/min welding speed without assist gas. Finally, the proto-type automotive parts were produced by applying the deduced optimal welding condition.

Bending Creep of Glulam and Bolted Glulam under Changing Relative Humidity

  • PARK, Junchul;SONG, Yojin;HONG, Soonil
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.676-684
    • /
    • 2020
  • This study was carried out in order to evaluate the bending creep deflection of glulams and bolted glulams beam-to-beam connection with steel-gusset plates and bolts under changing relative humidity. The two types of glulam beams (130 mm in width, 175 mm in thickness, and 3000 mm in length) used in this study were made from domestic larch and composed of seven layers. The gussets were made of 8-mm-thick steel plates. Creep testing was conducted under constant loads in an uncontrolled environment. The test was carried out in a room that was well ventilated through a window. The creep test specimens were loaded for 33,000 hours. A bending creep test for the glulams was conducted through four-point loading. The applied stresses were 20% and 30% of the MOR in the static bending test for the glulam and bolted glulam, respectively. After 33,000 hours, the creep deflection of the glulam at a 20% stress level increased by 39% to 99%, while the creep deflection of the glulam at a 30% stress level increased by 27% to 67%, as compared with instantaneous elastic deflection. The relative creep increased during autumn and winter, and recovered during spring and summer. The relative creep of the bolted glulams was changed abruptly by loading up to 5,000 hours, but stabilized after 5,000 hours, and then gradually increased until 33,000 hours. The relative creep of the bolted glulam increased 2.11 times on average after 33,000 hours.

Experimental Study on Fatigue Strength of Slip-Critical Splices using F13T High Strength Bolts (F13T급 고장력볼트를 이용한 마찰연결부 피로강도에 관한 실험적 연구)

  • Han, Jong Wook;Park, Young Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.623-629
    • /
    • 2008
  • New high strength bolts are required due to the development of the high strength steel, the ultra-thick steel plates, and the long-span bridge, though high strength bolts with tensile strength of 1,000 MPa are mainly used in construction site of every country. Consequently, in this study, we estimated the fatigue strength by performing fatigue test of slip-resistant splices with slip coefficients applying the newly developed F13T high strength bolts. The fatigue test satisfied the Category B requirements with the fatigue strength of slip-resistant splices. Also we analyzed the fatigue fracture characteristics of slip-resistant splices.

Study on the Brittle Crack Arrest Property for 9% Ni Steel by Duplex ESSO test (Duplex ESSO 시험법에 의한 9% Ni강 취성 균열정지 특성 연구)

  • Kim, Young Kyun;Oh, Byung Taek;Yang, Young Chul;Yoon, Ihn soo;Kim, Jae Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.47-54
    • /
    • 2020
  • A brittle fracture is one of the source of structural damage and can bring a fatal accident. The inner shell of LNG storage tank should be designed and applied to construction by ensure that no brittle crack will occur under -162℃ condition. In point of view of fracture mechanics brittle fracture in the structure could be referred as crack initiation and crack arrest. It should be designed no crack initiation. However, in the unlikely event of a brittle fracture occurring, a back-up function of arresting the brittle crack should be included for the design. In this paper investigated the characteristics of 9% Ni steel thick plates of having a capability of arresting brittle cracks under the thickness of 33 mm, 37mm, 40 mm. First, charpy test has performed to evaluate the fundamental brittle impact fracture property of 9% Ni steel under the temperature of 24℃, -162℃ and -196℃. In addition, Duplex ESSO tests were also performed under -196℃ to evaluate the capability of crack arrest for 9% Ni steel. From the experiments results, it was confirmed that all the thickness of 9% Ni steel plates exhibits sufficient brittle crack arrest fracture toughness for the application of LNG storage tank as a inner shell.