• Title/Summary/Keyword: Thick Walled Pipe

Search Result 6, Processing Time 0.021 seconds

Estimates of Elastic Fracture Mechanics Parameters for Thick-Walled Pipes with Slanted Axial Through-Wall Cracks (두꺼운 배관에 존재하는 축방향 경사관통균열의 탄성파괴역학 매개변수 계산)

  • Han, Tae-Song;Huh, Nam-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1521-1528
    • /
    • 2012
  • The present paper provides the elastic stress intensity factors (SIFs) and the crack opening displacements (CODs) of a thick-walled pipe with a slanted axial through-wall crack. For estimating these elastic fracture mechanics parameters, systematic three-dimensional elastic finite element (FE) analyses were performed by considering geometric variables, i.e., thickness of pipe, reference crack length, and crack length ratio, affecting the SIFs and CODs. As for loading condition, the internal pressure was considered. Based on the FE results, the SIFs and CODs of slanted axial through-wall cracks in a thickwalled pipe along the crack front and the wall thickness were calculated. In particular, to calculate the SIFs of a thick-walled pipe with a slanted axial through-wall crack from those of a thick-walled pipe with an idealized axial through-wall crack, a slant correction factor representing the effect of the slant crack on the SIFs was proposed.

New Plastic Limit Load Equations of Pipes with Inner and Outer Circumferential Surface Cracks Considering Thickness Effect (내부 및 외부 원주방향 표면균열이 존재하는 배관의 두께효과를 고려한 소성한계하중 계산식 제시)

  • Kim, Yeon-Soo;Huh, Nam-Su
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.2
    • /
    • pp.71-80
    • /
    • 2019
  • In this study, limit load equations of thick-walled pipes with inner and outer circumferential surface cracks were derived based on force and moment equilibrium conditions. Since the limit load equations based on the mean radius at uncracked ligament, previously proposed by Kanninen et al., are based on the premise that the pipe wall thickness is relatively thin, the existing limit load solutions are only applicable to thin-walled pipes. In order to analyze the effect of the pipe thickness and surface crack depth on the limit load results, the predictions using the present limit load equations are compared with those using the existing solutions for thin-walled pipes. Being derived considering the thickness effect, the limit load solutions from this paper are believed to be more accurate for thick-walled pipes than the limit load equations presented for thin-walled pipes, and thus to be valuable equations for integrity assessment of thick-walled pipes.

A Boundary Element Solution Approach for the Conjugate Heat Transfer Problem in Thermally Developing Region of a Thick Walled Pipe

  • Choi, Chang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2230-2241
    • /
    • 2006
  • This paper presents a sole application of boundary element method to the conjugate heat transfer problem of thermally developing laminar flow in a thick walled pipe when the fluid velocities are fully developed. Due to the coupled mechanism of heat conduction in the solid region and heat convection in the fluid region, two separate solutions in the solid and fluid regions are sought to match the solid-fluid interface continuity condition. In this method, the dual reciprocity boundary element method (DRBEM) with the axial direction marching scheme is used to solve the heat convection problem and the conventional boundary element method (BEM) of axisymmetric model is applied to solve the heat conduction problem. An iterative and numerically stable BEM solution algorithm is presented, which uses the coupled interface conditions explicitly instead of uncoupled conditions. Both the local convective heat transfer coefficient at solid-fluid interface and the local mean fluid temperature are initially guessed and updated as the unknown interface thermal conditions in the iterative solution procedure. Two examples imposing uniform temperature and heat flux boundary conditions are tested in thermally developing region and compared with analytic solutions where available. The benchmark test results are shown to be in good agreement with the analytic solutions for both examples with different boundary conditions.

A Study on the Process Sequence Design of a Short-Neck Flange (숏넥 플랜지의 공정설계에 관한 연구)

  • 장용석;최진화;고병두;이호용;황병복
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.127-134
    • /
    • 2000
  • The current three-stage cold farming process to produce a flange is investigated for the purpose of improvement of manufacturing process. The main goal of this study is to obtain an appropriate process sequence, which can produce the required part with less manufacturing cost. The current process sequence is simulated using finite element method and design criteria are examined. Based on the results of simulation of the current three-stage process. a design strategy for improving the process sequence is analyzed using the thick-walled pipes. Because it has a reduced process-sequence without buckling of the workpiece or overloading of tools, the new process has distinct advantages over the conventional process. Numerical results show that the newly proposed process with selected presses is the most economical way to produce the required part.

  • PDF

Static displacement and elastic buckling characteristics of structural pipe-in-pipe cross-sections

  • Sato, M.;Patel, M.H.;Trarieux, F.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.3
    • /
    • pp.263-278
    • /
    • 2008
  • Structural pipe-in-pipe cross-sections have significant potential for application in offshore oil and gas production systems because of their property that combines insulation performance with structural strength in an integrated way. Such cross-sections comprise inner and outer thin walled pipes with the annulus between them fully filled by a selectable thick filler material to impart an appropriate combination of properties. Structural pipe-in-pipe cross-sections can exhibit several different collapse mechanisms and the basis of the preferential occurrence of one over others is of interest. This paper presents an elastic analyses of a structural pipe-in-pipe cross-section when subjected to external hydrostatic pressure. It formulates and solves the static and elastic buckling problem using the variational principle of minimum potential energy. The paper also investigates a simplified formulation of the problem where the outer pipe and its contact with the filler material is considered as a 'pipe on an elastic foundation'. Results are presented to show the variation of elastic buckling pressure with the relative elastic modulus of the filler and pipe materials, the filler thickness and the thicknesses of the inner and outer pipes. The range of applicability of the simplified 'pipe on an elastic foundation' analysis is also presented. A brief review of the types of materials that could be used as the filler is combined with the results of the analysis to draw conclusions about elastic buckling behaviour of structural pipe-in-pipe cross-sections.

Analytical calculation method for the axial equivalent elastic modulus of laminated FRP pipes based on three-dimensional stress state

  • Chen, Li;Pan, Darong;Zhao, Qilin;Chen, Li;Chen, Liang;Xu, Wei
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.137-149
    • /
    • 2021
  • In engineering design, the axial equivalent elastic modulus of laminated FRP pipe was mostly calculated by the average elastic modulus method or the classical laminated plate theory method, which are based on relatively simplified assumptions, and may be not accurate enough sometimes. A new analytical calculation method for the axial equivalent elastic modulus of laminated FRP pipe was established based on three-dimensional stress state. By comparing the results calculated by this method with those by the above two traditional analytical methods and the finite element method, it is found that this method for the axial equivalent elastic modulus fits well not only for thin-walled pipes with orthotropic layers, but also for thick-walled pipes with arbitrary layers. Besides, the influence of the layer stacking on the axial equivalent elastic modulus was studied with this method. It is found that a proper content of circumferential layer is beneficial for improving the axial equivalent elastic modulus of the laminated FRP pipe with oblique layers, and then can reduce its material quantity under the premise that its axial stiffness remains unchanged. Finally, the meso-mechanical mechanism of this effect was analyzed. The improving effect of circumferential layer on the axial equivalent elastic modulus of the laminated FRP pipe with oblique layers is mainly because that, the circumferential fibers can restrain the rigid body rotations of the oblique fibers, which tend to cause the significant deformations of the pipe wall units and the relatively low axial equivalent elastic modulus of the pipe.