• Title/Summary/Keyword: Thermus

Search Result 77, Processing Time 0.022 seconds

β-Galactosidase Gene of Thermus thermophilus KNOUC112 Isolated from Hot Springs of a Volcanic Area in New Zealand: Identification of the Bacteria, Cloning and Expression of the Gene in Escherichia coli

  • Nam, E.S.;Choi, J.W.;Lim, J.H.;Hwang, S.K.;Jung, H.J.;Kang, S.K.;Cho, K.K.;Choi, Y.J.;Ahn, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.11
    • /
    • pp.1591-1598
    • /
    • 2004
  • To isolate the $\beta$-galactosidase producing thermophilic bacteria, samples of mud and water were collected from hot springs of avolcanic area near Golden Springs in New Zealand. Among eleven isolated strains, the strain of KNOUC112 produced the highest amounts of $\beta$-galactosidase at 40 h incubation time (0.013 unit). This strain was aerobic, asporogenic bacilli, immobile, gram negative, catalase positive, oxidase positive, and pigment producing. Optimum growth was at 70-72$^{\circ}C$, pH 7.0-7.2, and it could grow in the presence of 3% NaCl. The main fatty acids of cell components were iso-15:0 (30.26%), and iso-17:0 (31.31%). Based on morphological and biochemical properties and fatty acid composition, the strain could be identified as genus Thermus, and finally as Thermus thermophilus by phylogenetic analysis based on 16S rRNA sequence. So the strain is designated as Thermus thermophilus KNOUC112. A gene from Thermus thermophilus KNOUC112 encoding $\beta$-galactosidase was amplified by PCR using redundancy primers prepared based on the structure of $\beta$-galactosidase gene of Thermus sp. A4 and Thermus sp. strain T2, cloned and expressed in E. coli JM109 DE3. The gene of Thermus thermophilus KNOUC112 $\beta$-galactosidase(KNOUC112$\beta$-gal) consisted of a 1,938 bp open reading frame, encoding a protein of 73 kDa that was composed of 645 amino acids. KNOUC112$\beta$-gal was expressed as dimer and trimer in E. coli JM109 (DE3) via pET-5b.

Characteristics of Adenylate Kinase from Extreme Thermophile Thermus caldophilus GK-24 (고도 호열성균 Thermus caldophilus의 Adenylate Kinase의 성질)

  • ;Takahisa Ohta
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.5
    • /
    • pp.471-475
    • /
    • 1990
  • A thermostable adenylate kinase isolated from the sonic extracts of Thermus caldophilus cells revealed higher substrate-specificity to the nucleoside monophosphate than to the nucleoside triphosphate. A $P', P^5$-di(adenosine-5') pentaphosphate was acted as a competitive inhibitor to the various substrates. Various divalent cations were activated the enzyme activity following orders: $Mg^{2+}, Ca^{2+}, Mn^{2+}, Ba^[2+}, $ and $Fe^{2+}$-. The enzyme activity was not affected by the sulfurhydryl reagent, p-chloromeric uribenzoic acid and activated by addition of the sodium chloride or phosphoenol pyruvate to the reaction mixture.

  • PDF

Gene Cloning and Expression of Thermostable DNA Polymerase from Thermus thermophilus HJ6 (Thermus thermophilus HJ6 유래 내열성 DNA Polymerase의 유전자 클로닝 및 발현)

  • Seo, Min-Ho;Kim, Bu-Kyoung;Kwak, Pyung-Hwa;Kim, Han-Woo;Kim, Yeon-Hee;Nam, Soo-Wan;Jeon, Sung-Jong
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.1
    • /
    • pp.17-23
    • /
    • 2009
  • The gene encoding Thermus thermophilus HJ6 DNA polymerase (Tod) was cloned and sequenced. The open reading frame (ORF) of the Tod gene was composed of 2,505 nucleotides and encoded a protein (843 amino acids) with a predicted molecular weight of 93,795 Da. The deduced amino acid sequence of Tod showed 98% and 86% identities to the Thermus thermophilus HB8 DNA pol and Thermus aquaticus DNA pol, respectively, The Tod gene was expressed under the control of the bacteriophage $\lambda$ promoters PR and PL on the expression vector pJLA503 in Escherichia coli strain BL21 (DE3) codon plus. The expressed enzyme was purified by heat treatment, $HiTrap^{TM}$ Q column, and $HiPrep^{TM}$ Sephacryl S-200 HR 26/60 column chromatographies. The optimal temperature and pH for DNA polymerase activity were found to be $75{\sim}80^{\circ}C$ and 9.0, respectively. The optimal concentrations of $Mg^{2+}$ and $Mn^{2+}$ were 2.5 mM and 1 mM, respectively. The enzyme activity was activated by divalent cations, and was inhibited by monovalent cations. The result of the PCR experiment with Tod DNA polymerase indicates that this enzyme might be useful in DNA amplification and PCR-based applications.

Gentiobiose Synthesis from Glucose Using Recombinant $\beta$-Glucosidase from Thermus caldophilus GK24

  • Kim, Tae-Yeon;Lee, Dae-Sil;Shin, Hyun-Jae
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.3
    • /
    • pp.210-212
    • /
    • 2003
  • Recombinant $\beta$-glucosidase from Thermus caldophilus GK24 was easily purified partially by a heat treatment procedure, resulting in 8-fold and recovery yield of 80% from crude enzyme. When the $\beta$-glucosidase was incubated with a 80% glucose solution (w/w), gentiobiose ($\beta$1,6-glucobiose) was the major product in the reaction mixture. The optimal conditions for producing gentiobiose (11% yields of total sugar) were pH 8-9 and 7$0^{\circ}C$ for 72 h.

Gene Cloning and Expression of Trehalose Synthase from Thermus thermophilus HJ6 (Thermus thermophilus HJ6 유래 내열성 Trehalose Synthase의 유전자 클로닝 및 발현)

  • Kim, Hyun-Jung;Kim, Han-Woo;Jeon, Sung-Jong
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.3
    • /
    • pp.182-188
    • /
    • 2008
  • A hyperthermophilic bacteria (strain HJ6) was isolated from a hot springs located in the Arima-cho, Hyogo, Japan. The cells were long-rod type ($2-4{\mu}m$), about $0.4{\mu}m$ in diameter. The pH and temperature for optimal growth were 6.5 and $80^{\circ}C$, respectively. Phylogenetic analysis based on the 16S rDNA sequence and biochemical studies indicated that HJ6 belonged to the genus Thermus thermophilus (Tt). The gene encoding the Trehalose synthase (TS) was cloned and sequenced. The open reading frame (ORF) of the TtTS gene was composed of 2,898 nucleotides and encoded a protein (975 amino acids) with a predicted molecular weight of 110.56 kDa. The deduced amino acid sequence of TtTS showed 99% and 83% identities to the Thermus caldophilus TS and Meiothermus ruber TS, respectively. TtTS gene was expressed in Escherichia coli cells, and the recombinant protein was purified to homogeneity. The optimal temperature and pH for Trehalose synthase activity were found to be $80^{\circ}C$ and 7.5, respectively. The half-life of heat inactivation was about 40 min at $90^{\circ}C$. The maximum trehalose conversion rate of maltose into trehalose by the enzyme increased as the substrate concentration increased, and reached 55.7% at the maltose concentration of 500 mM, implying that the enzyme conversion was dependent of the substrate concentration.