• Title/Summary/Keyword: Thermotolerance

Search Result 69, Processing Time 0.031 seconds

Increased Thermotolerance of Transgenic Rice Plant by Introduction of Thermotolerant Gene

  • Lee, Byung-Hyun;Won, Sung-Hye;Kim, Ki-Yong;Lee, Hyoshin;Jinki Jo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.2
    • /
    • pp.97-102
    • /
    • 2000
  • To increase thennotolerance of forage crops, transgenic rice plants as a model for transformation of monocots were generated. A cDNA encoding the chloroplast-localized small heat shock protein (small HSP) of rice, Oshsp21, was introduced into rice plants via Agrobacterium-mediated gene transfer system. Calli induced from scutella were co-cultivated with a A. tumefaciens strain EHAlOl canying a plasmid, pIGhsp21. A large number of transgenic plants were regenerated on a medium containing hygromycin. Integration of Oshsp2l gene was confirmed by PCR and Southern blot analyses with genomic DNA. Northern blot and immunoblot analyses revealed that the Oshsp21 gene was constitutively expressed and accumulated as mature protein in transgenic plants. Effects of constitutive expression of the OshspZl on thermotolerance were first probed with the chlorophyll fluorescence. Results indicate that inactivation of electron transport reactions in photosystem I1 (PSII), were mitigated by constitutive expression of the Oshsp21. These results suggest that the chloroplast small HSP plays an important role in protecting photosynthetic machinery during heat stress. (Key words : Thermotolerance, Rice, Transgenic, cDNA)

  • PDF

Relationship between Heat Shock Protein 70 Synthesis and Development of Thermotolerance in the Olive Flounder, Paralichthys olivaceus

  • Kim, Woo-Jin;Myong, Jeong-In;Lee, Jeong-Ho;Park, Jung-Youn;Park, Jung-Youn;Kim, Doo-Won;Kang, Kyung-KIl;Kim, Han-Do
    • Journal of Aquaculture
    • /
    • v.13 no.2
    • /
    • pp.181-186
    • /
    • 2000
  • Relationship between hsp 70 expression and development of thermotolerance in the olive flounder was investigated by exposing the fish to 23 or 26$^{\circ}C$ for 1 h. After selected intervals, they were re-exposed to 31$^{\circ}C$ for a duration of 15 min. Theremotolerance rapidly developed with increasing interval and peaked at 3 h interval. Subsequently, it gradually decayed and disappeared by 24 h interval. The flounder displayed remarkably high levels of hsp 70 mRNA and protein, as compared to control flounder. Hence, the olive flounder acquires thermotolerance, which is positively correlated with the synthesis of hsp 70.

  • PDF

Association of selected gene polymorphisms with thermotolerance traits in cattle - A review

  • Hariyono, Dwi Nur Happy;Prihandini, Peni Wahyu
    • Animal Bioscience
    • /
    • v.35 no.11
    • /
    • pp.1635-1648
    • /
    • 2022
  • Thermal stress due to extreme changes in the thermal environment is a critical issue in cattle production. Many previous findings have shown a decrease in feed intake, milk yield, growth rate, and reproductive efficiency of cattle when subjected to thermal stress. Therefore, selecting thermo-tolerant animals is the primary goal of the efficiency of breeding programs to reduce those adverse impacts. The recent advances in molecular genetics have provided significant breeding advantages that allow the identification of molecular markers in both beef and dairy cattle breeding, including marker-assisted selection (MAS) as a tool in selecting superior thermo-tolerant animals. Single-nucleotide polymorphisms (SNPs), which can be detected by DNA sequencing, are desirable DNA markers for MAS due to their abundance in the genome's coding and non-coding regions. Many SNPs in some genes (e.g., HSP70, HSP90, HSF1, EIF2AK4, HSBP1, HSPB8, HSPB7, MYO1A, and ATP1A1) in various breeds of cattle have been analyzed to play key roles in many cellular activities during thermal stress and protecting cells against stress, making them potential candidate genes for molecular markers of thermotolerance. This review highlights the associations of SNPs within these genes with thermotolerance traits (e.g., blood biochemistry and physiological responses) and suggests their potential use as MAS in thermotolerant cattle breeding.

Overexpression of Rice Chloroplast Small Heat Shock Protein Increases Thermotolerance in Transgenic Plants (벼 엽록체 small HSP의 과발현에 의한 형질전환 식물체의 내열성 증가)

  • 원성혜;조진기;이병헌
    • Journal of Life Science
    • /
    • v.13 no.1
    • /
    • pp.83-89
    • /
    • 2003
  • To investigate the function of chloroplast small heat shock protein (HSP), transgenic tobacco plants (Nicotiana tabacum L, cv. SR-1) that constitutively overexpress the rice chloroplast small HSP (Oshsp26) were generated. Effects of constitutive expression of the Oshsp26 on thermotolerance were investigated with the chlorophyll fluorescence. After 5-min incubation of leaf discs at high temperatures, an increase in the Fo level, indication of separation of LHCII from PSII, was mitigated by constitutive expression of the chloroplast small HSP When tobacco plantlets grown in Petri dishes were incubated at $20^{\circ}C$/TEX> for 45 min and subsequently incubated at $20^{\circ}C$/TEX> leaf color of wild-type plant became gradually white and all plantlets were finally died. Under the conditions in which all the wild-type plants died, more than 80% of the transformants remained green and survived. It was also found that the levels of Oshsp26 protein accumulated in transgenic plants were correlated with the degree of thermotolerance. These results suggest that the chloroplast small HSP plays an important role in protecting photosynthetic machinery, as a results, increases thermotolerance of whole plant during heat stress.

Enhanced Thermotolerance of Entomopathogenic Beauveria bassiana and Metarhizium anisopliae JEF-isolates by Substrate Modification

  • Yu, Jeong Seon;Lee, Se Jin;Shin, Tae Young;Kim, Woo Jin;Kim, Jae Su
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.41 no.2
    • /
    • pp.28-35
    • /
    • 2020
  • Entomopathogenic Beauveria bassiana and Metarhizium anisopliae are well-known biological control agents worldwide, and have high potential in industrialization. However, their thermo-susceptibility limits long-term storage under high temperature conditions and insecticidal activity after application in target pests. The virulences of M. anisopliae JEF-003 and JEF-004, and B. bassiana JEF-006 and JEF-007 against bean bug (Riptortus pedestris), and the thermotolerance of conidia produced on three kinds of grains, sorghum, millet and Italian millet as substrates for solid cultures were investigated. Of the three grains, Italian millet was the suitable grains in the production of thermotolerant conidia, and a significant relationship between conidial thermotolerance and the media was demonstrated. This work suggests that biological characteristics of entomopathogenic fungi are altered by culture media, and these results will be a chance to understand the factors in the media which make such changes.

Constitutive Expression of Small Heat Shock Protein Increases Thermotolerance in Transgenic Plant (저 분자량 Heat Shock Protein의 항상적 발현에 의한 형질전판 식물체의 고온내성 증가)

  • 이병현
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.1
    • /
    • pp.13-18
    • /
    • 2000
  • To investigate the function of chloroplast small HSP, transgenic tobacco plants (Nicotiana tabacum L. cv. Samsun) that constitutively overexpress the chloroplast small HSP (NtHSP21) from N. tabacum cv. Petit Havana SR1 were generated. Five homozygous lines of transformants showing different constitutive expression levels of the NtHSP21 were selected. To determine whether constitutive overexpression of NtHSP21 protein affects thermotolerance, wild-type and transformants were grown in Petri dishes, heat-stressed at 52$^{\circ}C$ for 45 min, and then incubated in normal growth condition. When heat-stressed wild-type plantlets were incubated at $25^{\circ}C$, leaf color gradually became white and all trio plantlets finally died within a week. As for the transformants, however, more than 70% of them remained green and survived under the conditions in which all the wild-type plants were dying. It was also found that the levels of NtHSP21 were correlated with the degree of thermotolerance. These results suggest that the NtHSP21 protein in transformants is responsible for the increase in thermotolerance.

  • PDF

Overexpression of YbeD in Escherichia coli Enhances Thermotolerance

  • Kim, Sinyeon;Kim, Youngshin;Yoon, Sung Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.401-409
    • /
    • 2019
  • Heat-resistant microbial hosts are required for bioprocess development using high cell density cultivations at the industrial scale. We report that the thermotolerance of Escherichia coli can be enhanced by overexpressing ybeD, which was known to encode a hypothetical protein of unknown function. In the wild-type E. coli BL21(DE3), ybeD transcription level increased over five-fold when temperature was increased from $37^{\circ}C$ to either $42^{\circ}C$ or $46^{\circ}C$. To study the function of ybeD, a deletion strain and an overexpression strain were constructed. At $46^{\circ}C$, in comparison to the wild type, the ybeD-deletion reduced cell growth half-fold, and the ybeD-overexpression promoted cell growth over two-fold. The growth enhancement by ybeD-overexpression was much more pronounced at $46^{\circ}C$ than $37^{\circ}C$. The ybeD-overexpression was also effective in other E. coli strains of MG1655, W3110, DH10B, and BW25113. These findings reveal that ybeD gene plays an important role in enduring high-temperature stress, and that ybeD-overexpression can be a prospective strategy to develop thermotolerant microbial hosts.

Effect of NaCl Adaptation on the Thermotolerance and Alcohol Fermentation in Saccharomyces cerevisiae KNU5377. (Saccharomyces cerevisiae KNU5377의 NaCl에 대한 적응이 고온내성과 알코올발효에 미치는 영향)

  • 백상규;윤혜선;사금희;김일섭;이인구;박희동;유춘발;진익렬
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.1
    • /
    • pp.63-68
    • /
    • 2003
  • Saccharomyces cerevisiae KNU5377 is a constitutively thermotolerant, fermentative strain at high temperatures over 4$0^{\circ}C$. The exposure to 0.5 M NaCl caused S. cerevisiae KNU5377 to be lost its constitutive thermotolerance. Furthermore, the NaCl adaptation beyond 0.3 M during the overnight culture forced the strain-specific fermentation ability of S. cerevisiae KNU5377 to be disappeared. However, these phenomena did not occur in the reference, Saccharomyces cerevisiae ATCC24858. As a result, this adaptation led both strains to show the closely similar thermotolerance level and alcohol fermentation ability, implying the NaCl adaptation eliminated its strain-specific characteristics of S. cerevisiae KNU5377 Therefore it indicated that the superior intrinsic characteristics of S. cerevisiae KNU5377 must be related to the NaCl adaptation. On the other hand, the heat adaptation elevated alcohol productivity for both strains, but surprisingly did it for KNU5377 at the rate of two times higher than the reference's one; this suggests that KNU5377 possesses more efficient system enough to cause the difference. Consequently, these characteristics of S. cerevisiae KNU5377 must be interesting targets for further study to understand on how KNU5377 could acquire the constitutive thermotolerance and the outstanding fermentative capacity at high temperatures.

$^{13}C$ NMR Studies of Metabolic Pathways Regulated by HSP104 in Saccharomyces cerevisiae

  • 이경희;강수임;Susan Lindquist
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.3
    • /
    • pp.295-299
    • /
    • 1998
  • HSP104 protein in Saccharomyces cerevisiae is known to provide thermotolerance when induced by various kinds of stresses, such as a mild heat shock, ethanol, and hypoxia. It helps cells survive at an otherwise lethal temperature. Mechanisms by which HSP104 protein works are yet to be elucidated. In order to understand a molecular basis of thermotolerance due to HSP104 protein induced by a mild heat shock, studies on respiratory pathways were carried out in the wild type as well as in the hsp104 deleted mutant. Especially the degree of 13C-acetate incorporation into glutamate-C4 was examined for both strains using 13C-13C homonuclear spin coupling measurements, since glutamate is in a rapid equilibrium with α-ketoglutarate in the TCA cycle. In addition, the temperature effects on the rate of 13C incorporation are compared with or without HSP104 protein expressed. Finally, the inhibitory effect of HSP104 on the respiration pathway was confirmed by the measurements of oxygen consumption rates for both strains.

Introduction of Chloroplast Small Heat Shock Protein Increases Photosynthesis and Thermotolerance in Transgenic Plants (엽록체 Small Heat Shock Protein의 도입에 따른 형질전환 식물체의 광합성 활성 및 고온내성의 증가)

  • Lee, Byung-Hyun;Jo, Jin-Ki
    • Current Research on Agriculture and Life Sciences
    • /
    • v.17
    • /
    • pp.15-20
    • /
    • 1999
  • To investigate the function of the chloroplast small heat shock protein (small HSP), transgenic tobacco plants (Nicotiana tabacum L., cv. SRI) that show constitutive expression of the chloroplast small HSP were generated. Effects of constitutive expression of the introduced gene on thermotolerance were first probed with the chlorophyll fluorescence. After a 5-min incubation of leaf discs at high temperatures, an increase in the Fo level and a decrease in the Fv level, indications of separation of LHCII from PSII and inactivation of electron transport reactions in PSII, were mitigated by constitutive expression of the small HSP. When tobacco plantlets grown in Petri dishes were incubated at $52^{\circ}C$ for 45 min and subsequently incubated at $25^{\circ}C$, leaf color of nontransformants was gradually became white and all plantlets finally were died. Under conditions in which all nontransformants were dying, more than 80% of the transformants remained green and survived. These results suggest that the chloroplast small HSP plays an important role in protecting photosynthetic machinery during heat stress.

  • PDF