• Title/Summary/Keyword: Thermosetting

Search Result 147, Processing Time 0.025 seconds

Effects of Equivalent Weight of Epoxy Resins and Content of Catalyst on the Curing Reaction in Cationic Catalyst/Epoxy Cure System (양이온 촉매/에폭시 경화계에서 에폭시 수지의 당량 및 촉매 함량이 경화반응에 미치는 영향)

  • Kim, Youn Cheol;Park, Soo-Jin;Lee, Jae-Rock
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.960-966
    • /
    • 1997
  • The effects of epoxy resins and content of catalyst on the cure characteristics were studied by FT-IR, DSC and dynamic viscometer for the thermal properties and rheological properties of the catalytic (N-Benzylpyrazinium hexafluoroantimonate, BPH) epoxy thermosetting system. Compared with DSC results of DEGBF containing 0.5wt% BPH, the DSC thermograms of DGEBA containing 0.5wt% BPH indicated that the reaction was faster than that of DGEBF/BPH and the conversion rate of DGEBA/BPH was high in the initial stage of the reaction. As the concentration of BPH increases, the reaction and conversion rates show similar value in both the cases. The influence of hydroxyl group of epoxy resin on gel point defined from the crossover point of storage modulus (G') and loss modulus (G") could be explained by the formation of 3-dimensional network in the initial stage owing to the curing reaction between epoxides and hydroxyl groups of epoxy resin. This was consistent with the gel point obtained from DSC, FT-IR and moduli crossover. The activation energy (Et) obtained from the crossover point (G'/G"=1) are $31-39kJ.mol^{-1}$ for various BPH compositions in case of two epoxy systems.

  • PDF

Cure Monitoring of Am Epoxy-Anhydride System by Means of Fluorescence Spectroscopy (형광분석기를 이용한 에폭시-산무수물계의 경화 모니터링)

  • 조동환;김득수;이종근
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.199-207
    • /
    • 2001
  • In the present study the cure behavior of diglycidyl ether of bisphenol-A(DGEBA) using an anhydride-based hardener in the presence of N,N-dimethyl benzyl amine (BDMA) or 1-cyanoethyl-2-ethyl-4-methyl imidazole (2E4MZ-CN) as an accelerator has been monitored and interpreted from the viewpoint of photophysical properties by means of fluorescence spectroscopy. To do this, 1,3-bis-(1-pyrene)propane (BPP) was well incorporated in the epoxy resin system by mechanical blending. The BPP probe, which is very sensitive to conformational change of the molecule influenced by the surrounding medium, successfully formed intramolecular excimer fluorescence. It is susceptible to the micro-viscosity or local viscosity and molecular mobility according to the epoxy cure. The cure behavior was explained with monomer fluorescence intensity ($I_{M}$ ), excimer fluorescence intensity ($I_{E}$ ) and $I_{M}$ /$I_{E}$ ratio as a function of cure time, cure temperature and accelerator. The present work agreed with the previous report on the cure behavior of an epoxy-anhydride system studied using DSC or torsion pendulum method. This study also suggests that the use of fluorescence technique may provide information on cure behavior of a thermosetting resin in a low temperature region, which has not been well interpreted by other analytical methods.

  • PDF

A Study on the Characteristics of Organic Insulating Materials Carbonized by a Leakage Current (누설전류에 의하여 탄화된 유기절연재료의 특성에 대한연구)

  • Park, Sang-Taek;Roh, Young-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.161-167
    • /
    • 2009
  • Organic insulating materials which are utilized as insulating materials for the low voltage show unique carbonization characteristics when they are carbonized by a leakage current. Therefore the use of the carbonization characteristics makes it possible to examine the electrical fire which is caused by a leakage current flowing on the surface of the organic insulating material. In order to understand such carbonization characteristics, in this paper, experiments have been done to carbonize typical organic insulating materials such as phenol resin, PVC, and acrylic resin, and the carbonization patterns and the IR absorption spectrum of specimens have been analyzed. According to the analysis of the carbonization patterns, the phenol resin shows the so-called 'spider-leg' carbonization pattern due to a thermosetting property. In contrast to the phenol resin, the thermoplastic property makes it difficult to observe a clear carbonization pattern to verify carbonizing causes on the surfaces of PVC and acrylic resins. In this case, the IR absorption spectrum can be analyzed to examine the specimen carbonized by a leakage current. The analysis result shows that absorption peaks appear at the wave numbers of $3,400[cm^{-1}]$ and $1,618[cm^{-1}]$, which can be an important factor to verify the carbonizing causes.

The Optimum Stabilization Conditions of TiO2-containing Pitch Fiber (TiO2 함유 피치섬유의 최적 안정화 조건)

  • Eom, Sang Yong;Lee, Chang Ho;Park, Kwan Ho;Ryu, Seung Kon
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.269-276
    • /
    • 2007
  • $TiO_2$-containing pitch fibers were prepared and various stabilization variables were investigated by characterizations of the fibers and behaviors of $TiO_2$ particles in the optimum stabilization conditions. When pitch fiber was stabilized by air at the optimum condition, the fiber weight increased as an increase of the stabilization temperature and a decrease of $TiO_2$ concentration. The carbonization yield was 71~82 wt.%, showing a decrease of the yield with the $TiO_2$ increase caused by the catalytic activity of $TiO_2$ to combustion. During the stabilization, newly developed carbonyl and carboxyl groups were introduced on the fiber surface and cross-linking reactions were progressed resulting the thermosetting property, which was verified by the replacement of hydrogen with oxygen. Pore size of the activated carbon fiber was increased by an increase in $TiO_2$ concentration. In the considerations of the aggregation behaviors of the $TiO_2$ particles, the optimum stabilization conditions of 0.5 wt.% $TiO_2$ containing petroleum-based pitch fiber were suggested as $280^{\circ}C$, 3 hr.

The Interdigitated-Type Capacitive Humidity Sensor Using the Thermoset Polyimide (열경화성 폴리이미드를 이용한 빗살전극형 정전용량형 습도센서)

  • Hong, Soung-Wook;Kim, Young-Min;Yoon, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.604-609
    • /
    • 2019
  • In this study, we fabricated a capacitive humidity sensor with interdigitated (IDT) electrodes using a thermosetting polyimide as a humidifying material. First, the number of electrodes, thickness, and spacing of the polyimide film were optimized, and a mask was designed and fabricated. The sensor was fabricated on a silicon substrate using semiconductor processing equipment. The area of the sensor was $1.56{\times}1.66mm^2$, and the width of the electrode and the gap between the electrodes were each $3{\mu}m$. The number of electrodes was 166, and the length of an electrode was 1.294 mm for the sensitivity of the sensor. The sensor was then packaged on a PCB for measurement. The sensor was inserted into a chamber environment with a temperature of $25^{\circ}C$ and connected to an LCR meter to measure the change in capacitance at relative humidity (RH) of 20% to 90%, 1 V, and 20 kHz. The results showed a sensitivity of 26fF/%RH, linearity of < ${\pm}2%RH$, and hysteresis of < ${\pm}2.5%RH$.

Glass Fiber Composite Material with Polyurethane Toughener in Unsaturated Polyester Resin (UPR) (불포화 폴리에스터 (UPR)에 폴리우레탄을 첨가하여 강인성을 부여한 유리섬유 복합소재)

  • Baek, Chang Wan;Jang, Tae Woo;Kim, Taehee;Kim, Hye Jin;Kim, Hyeon-Gook;Kim, Changyoon;Seo, Bongkuk;Lim, Choong-Sun
    • Journal of Adhesion and Interface
    • /
    • v.22 no.2
    • /
    • pp.63-68
    • /
    • 2021
  • Unsaturated Polyester Resin (UPR) is in general used as a resin to prepare for composite materials with reinforcing materials such as glass fibers. UPR, a thermosetting resin, is used in industry to prepare for sheet molding compound (SMC) molding prepreg that has excellent productivity and is advantageous for mass production among various molding methods of composite materials. The fiber-reinforced composite material using UPR as a matrix material is light and has the advantage of excellent physical properties, but it is weak against impact and is fragile. Four types of polyurethane were synthesized and added to UPR resin to overcome the shortcomings.

Enzymatic Synthesis of Flame Retardant Phenolic Polymers Catalyzed by Horseradish Peroxidase (Horseradish Peroxidase 효소촉매에 의한 난연성 페놀고분자의 합성)

  • Park, Han Sol;Park, Jung Hee;Lee, Hak Sung;Ryu, Keungarp
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.111-115
    • /
    • 2013
  • The optimum synthetic conditions of poly(p-phenylphenol) by horseradish peroxidase in dioxane:water (80:20 v/v) mixtures were studied. The stability against thermal degradation and structural properties of the synthesized phenolic resins were investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively. The synthetic yield of poly(p-phenylphenol) increased upon the increase of the amount of enzyme up to 0.25 mg HRP/mL, then leveled off for further increase of the enzyme usage. When sodium acetate (100 mM, pH 4~6) and sodium phosphate (100 mM, pH 7~9) were used as the buffering salts for the aqueous component (20% v/v), the synthetic yield of the resin increased at higher pH of the aqueous buffer. But when the pHs of the aqueous buffer were 6 and 9, the synthetic yield strongly depended on the types of the buffering salts; if sodium phosphate was used instead of sodium acetate at pH 6, the yield decreased by about 15% and if sodium bicarbonate was used instead of sodium phosphate, the yield decreased by almost 20%. When the pH range of the aqueous buffer was from 4 to 7, the addition of a radical mediator, 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) (ABTS), up to 2 mM improved the synthetic yield of the resin by about 10%. TGA experiments revealed that the thermal stability of the resin synthesized in dioxane:water (100 mM sodium phosphate, pH 9) (80:20 v/v) was high having the char yield of 47% upon the heating at $800^{\circ}C$. DCS results showed that the structures of the polymers synthesized in acidic aqueous buffers were different from those of the polymers synthesized in the basic aqueous buffers. However, all the synthesized resins were found to have the property of the thermosetting resins.