• Title/Summary/Keyword: Thermoplastic Resin

Search Result 115, Processing Time 0.027 seconds

Estimation of viscosity of by comparing the simulated pressure profile from CAE analysis with the Long Fiber Thermoplastic(LFT) measuring cavity pressure (Long Fiber Thermoplastic(LFT) 사출성형 공정에서 캐비티 내 압력 측정 및 CAE해석을 활용한 점도 추정)

  • Lim, Seung-Hyun;Jeon, Kang-Il;Son, Young-Gon;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1982-1987
    • /
    • 2011
  • In this study, we proposed a new method that can estimate viscosity curves of unknown samples or high viscous resins like LFT(Long Fiber Thermoplastics). First, we built the system that could detect the pressure of melt during filling the cavity in a mold. It consists of both pressure sensors which are installed in a mold and the Kit which can convert analog signal to digital signal. The kit measures the melt pressure in mold cavity. We could also simulate the cavity pressure during filling process with commercialized CAE softwares(ex, Moldflow). If the viscosity data in CAE Database were correct, the simulated pressure profile coincided with the measured one. According to our proposed algorithm, we obtained correct viscosity data by iterating the process of comparing the simulated profile with the measured one until both coincided each other. In order to verify this algorithm, we selected well-defined PP resin and concluded that the experimental profile comply with the CAE profile. We could also estimate the optimized viscosity curves for PP-LFT by applying our method.

The Recovery of Carbon Fiber from Carbon Fiber Reinforced Epoxy Composites Applied to Railway Vehicles (철도차량용 폐 복합소재로부터 탄소섬유 회수)

  • Lee, Suk-Ho;Kim, Jung-Seok;Lee, Cheul-Kyu;Kim, Yong-Ki;Ju, Chang-Sik
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.1059-1066
    • /
    • 2009
  • Recently, the amount of thermosetting plastic wastes has increased with the production of reinforced plastic composites and causes serious environmental problems. The epoxy resins, one of the versatile thermosetting plastics with excellent properties, cannot be melted down and remolded as what is done in the thermoplastic industry. In this research, a series of experiments that decompose epoxy resin and recover carbon fibers from carbon fiber reinforced epoxy composites applied to railway vehicles was performed. We experimentally examined various decomposition processes and compared their decomposition efficiencies and mechanical property of recovered carbon fibers. For the prevention of tangle of recovered carbon fibers, each composites specimen was fixed with a Teflon supporter and no mechanical mixing was applied. Decomposition products were analyzed by scanning electron microscope (SEM), gas chromatography mass spectrometer (GC-MS), and universal testing machine (UTM). Carbon fibers could be completely recovered from decomposition process using nitric acid aqueous solution, liquid-phase thermal cracking and pyrolysis. The tensile strength losses of the recovered carbon fibers were less than 4%.

Property improvement of natural fiber-reinforced green composites by water treatment

  • Cho, Dong-Hwan;Seo, Jeong-Min;Lee, Hyun-Seok;Cho, Chae-Wook;Han, Seong-Ok;Park, Won-Ho
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.299-314
    • /
    • 2007
  • In the present study, natural fibers (jute, kenaf and henequen) reinforced thermoplastic (poly(lactic acid) and polypropylene) and thermosetting (unsaturated polyester) matrix composites were well fabricated by a compression molding technique using all chopped natural fibers of about 10 mm long, respectively. Prior to green composite fabrication, natural fiber bundles were surface-treated with tap water by static soaking and dynamic ultrasonication methods, respectively. The interfacial shear strength, flexural properties, and dynamic mechanical properties of each green composite system were investigated by means of single fiber microbonding test, 3-point flexural test, and dynamic mechanical analysis, respectively. The result indicated that the properties of the polymeric resins were significantly improved by incorporating the natural fibers into the resin matrix and also the properties of untreated green composites were further improved by the water treatment done to the natural fibers used. Also, the property improvement of natural fiber-reinforced green composites strongly depended on the treatment method. The interfacial and mechanical results agreed with each other.

Performance Evaluation and Analysis of the Screw and Die of the Single Screw Extruder Using the CFD (CFD를 이용한 단축압출기 스크류 및 다이스의 성능시험평가 및 해석에 관한 연구)

  • Kim, Jae-Yoel;Chung, Hyo-Hee
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.194-200
    • /
    • 2009
  • The extruder type is classified as screw type and non-screw type in terms of the extrusion method. The screw type extruder, which is the most frequently used, is classified as the single screw extruder and the multi-screw extruder. They are classified as vertical type and horizontal type in terms of structure; and those for compounding and for forming in terms of function. The single screw extruder is a universal extruder, most of which is suitable for the extrusion forming of thermoplastic resin. The multi-screw(two-screw, three-screw and four-screw) extruder can increase the extrusion power using the engagement of the screw flank. The single screw extruder does not have a good mixing ratio of the raw material and stable extrusion power, while it has low construction cost and operation cost. In this study, the single screw extruder, which has many weak points compared with the multi-screw extruder, was studied. There have been many studies on the single screw extruder, and they led to its significant development. The existing study method, however, had complex analysis processes and required much time. In this study, the CFD was applied to the performance test and analysis of the extruder, and the optimal design condition of the extrusion power for the screw and die of the single screw extruder was found by comparing the analysis results with the actual performance measurement of the single screw extruder.

Permeation Property of Ionomer Film with New Multifunctional Ionic Site (다관능기를 도입한 아이오노머 필름의 기체투과 특성)

  • Lee, Bo-Mi;Jeong, Sam-Bong;Nam, Sang-Yong
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.227-236
    • /
    • 2012
  • Ionomer is a thermoplastic that is composed of covalent bonds and ionic bonds. It is possible to use this material in processes such as injection molding or extrusion molding due to the material's high oil resistance, weatherproof characteristics, and shock resistance. In this study, a new ionomer having a multifunctional group was prepared by a stepwise neutralization system with the addition of acidic and salt additives. In step I, to increase the contents of the multifunctional group and the acid degree in ethylene acrylic acid (EAA), MGA was added to the ionomer resin (EAA). A new ionomer was prepared via the traditional preparation method of the ionic cross-linking process. In step II, metal salt was added to the mixture of EAA and MGA. The extrusion process was performed using a twin extruder (L/D = 40, size : ${\varphi}30$). Ionomer film was prepared for evaluation of gas permeability by using the compression molding process. The degree of neutralized and ionic cross-linked new ionomer was confirmed by FT-IR and XRD analysis. In order to estimate the neutralization of the new ionomer film, various properties such as gas permeation and mechanical properties were measured. The physical strength and anti-scratch property of the new ionomer were improved with increase of the neutralization degree. The gas barrier property of the new ionomer was improved through the introduction of an ionic site. Also, the ionic degree of cross-linking and gas barrier property of the ionomer membrane prepared by stepwise neutralization were increased.

Fabrication and Applications of Polyphenylene Sulfide (PPS) Composites: A Short Review (폴리페닐렌설파이드(PPS) 복합소재 제조 및 응용)

  • Choi, Minsik;Lee, Jungrok;Ryu, Seongwoo;Ku, Bon-Cheol
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.91-100
    • /
    • 2020
  • Polyphenylene sulfide (PPS) is a semi-crystalline engineering thermoplastic resin that has outstanding thermal stability, mechanical strength, inherent flame retardancy, chemical resistance, and electrical properties. Due to these outstanding properties, it is preferred as a matrix for composite materials. Many studies have been conducted to produce composites with carbon fibers and glass fibers to improve mechanical properties and provide functionality of PPS. In this review paper, we report a brief introduction to the fabrication and applications of PPS composites with carbon nanotubes, graphene, carbon fibers, and glass fibers.

Asphalt Sealant Containing the Waste Edible Oil (폐식용유를 이용한 아스팔트 실란트)

  • Kim, Seong-Jun
    • Elastomers and Composites
    • /
    • v.39 no.1
    • /
    • pp.61-70
    • /
    • 2004
  • This work is about the development or asphalt sealant using the waste edible oil. Asphalt sealant has been used for crack filler and bridge deck joint sealer Several plasticizers such as aromatic or paraffin process oils, DOP, Bunker C fuel oil, and waste edible oil were compounded with the basic components such as asphalt(AP-5), a thermoplastic elastomer(SBS triblock copolymer), a tackifying agent(petroleum resin), and stabilizers. Penetration, softening point, ductility, and elongation by tensile adhesion of those asphalt sealant compounds were measured. Their properties were changed largely depending on both the type and content of plasticizers. Waste edible oil and DOP were the best plasticizers for the low temperature tensile adhesion characteristics. Penetration and elongation by tensile adhesion of asphalt sealant compounds increased with the increase of waste edible oil content and decreased with the increase of talc content. The manufacture of asphalt sealant with low penetration and excellent low temperature tensile adhesion was possible by the recipe optimization.

A study on the electrical and mechanical properties of PEMFC bipolar plate by thermoplastic composite injection molding process (열가소성 복합소재를 이용하여 사출성형 한 PEMFC용 bipolar plate의 전기전도도 및 기계적 특성 연구)

  • Yoon, Yong-Hun;Kim, Dong-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1999-2004
    • /
    • 2011
  • This research aims to develop polymer composites which can be used for PEMFC bipolar plate by injection molding process. Considering the moldability and stiffness, we used LCP(Liquid crystal polymer) as base resin. In order to improve electrical conductivity and mechanical properties, we chose carbon black, and both synthetic graphite and expanded graphite. The composites with different recipe are prepared for injection molding of PEMFC bipolar plate and CAE(Computer Aided Engineering) analysis was performed to predict melt flow and fiber orientation We did successfully fabricate the ASTM specimens by injection molding, and measure the electrical conductivity of the samples by using four point probe device. We measured mechanical properties such as flexural strength, flexural modulus and Izod impact strength. Conclusively, the electrical conductivity increased with increasing additive concentration, but both flexural strength and Izod impact strength decreased due to the brittle nature of carbon-based additives.

Early wound healing of the hard-palate mucosal harvest site using artificial dermis fixation by a transparent plate

  • Suzuki, Yushi;Tanaka, Ichiro;Sakai, Shigeki;Yamauchi, Tomohiro
    • Archives of Plastic Surgery
    • /
    • v.48 no.2
    • /
    • pp.208-212
    • /
    • 2021
  • Background There are currently no guidelines for the postoperative wound management of the hard-palate donor site in cases involving mucosal harvesting. This study describes our experiences with the use of an artificial dermis for early epithelialization and transparent plate fixation in cases involving hard-palate mucosal harvesting. Methods A transparent palatal plate was custom-fabricated using a thermoplastic resin board. After mucosal harvesting, an alginic acid-containing wound dressing (Sorbsan) was applied to the donor site, which was then covered with the plate. After confirming hemostasis, the dressing was changed to artificial dermis a few days later, and the plate was fixed to the artificial dermis. The size of the mucosal defect ranged from 8×25 to 20×40 mm. Results Plate fixation was adequate, with no postoperative slippage or infection of the artificial dermis. There was no pain at the harvest site, but a slight sense of incongruity during eating was reported. Although the fabrication and application of the palatal plate required extra steps before and after harvesting, the combination of the artificial dermis and palatal plate was found to be very useful for protecting the mucosal harvest site, and resulted in decreased pain and earlier epithelialization. Conclusions The combination of artificial dermis and a transparent palatal plate for wound management at the hard-palate mucosal donor site resolved some of the limitations of conventional methods.

Effect of Unidirectional Carbon Fiber Sheet Manufacturing Process Using Coated Glass Fiber and Carbon Fiber on Concrete Reinforcement (유리섬유 코팅사와 탄소섬유를 이용한 일방향 탄소섬유시트 제조공정이 콘크리트 보강에 미치는 영향)

  • Kwon, Jieun;Kwon, Sunmin;Chae, Seehyeon;Jeong, Yedam;Kim, Jongwon
    • Textile Coloration and Finishing
    • /
    • v.34 no.3
    • /
    • pp.185-196
    • /
    • 2022
  • In this study, carbon fiber and coated glass fiber are applied to warp and weft fiber in order to reduce the amount of carbon fiber used in carbon fiber fabrics, which are often used for reinforcement of building structures. A low-cost thermoplastic resin was coated on glass fibers to prepare a shape-stabilizing glass fiber. A unidirectional carbon fiber sheet was manufactured using the prepared coated glass fiber and carbon fiber. In order to identify whether it can be used for reinforcing architectural and civil structures, it was attached to a concrete specimen and its mechanical properties were analyzed. The optimum manufacturing conditions for the coated glass fiber were 0.3 mm in diameter of the coating nozzle, the coating temperature was 190 ℃, and the coating speed was 0.3 m/s. 14 mm was optimal for the weft spacing of the coated glass fiber. The flexural strength of the concrete reinforced with the manufactured unidirectional carbon fiber sheet was slightly lower than that of the concrete reinforced with carbon fiber fabric, but it was confirmed that the reinforcement effect was better when the amount of carbon fiber was considered.