• 제목/요약/키워드: Thermophysiological comfort

검색결과 9건 처리시간 0.026초

Evaluation of Thermal Comfortable Feeling by EEG Analysis

  • Kamijo, Masayoshi;Horiba, Yosuke;Hosoya, Satoshi;Takatera, Masayuki;Sadoyama, Tsugutake;Shimizu, YosiHo
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2000년도 춘계 학술대회 및 국제 감성공학 심포지움 논문집 Proceeding of the 2000 Spring Conference of KOSES and International Sensibility Ergonomics Symposium
    • /
    • pp.230-234
    • /
    • 2000
  • Thermal comfort by wearing clothes is the important element which gives influence to a clothing comfort. The thermal comfort of clothes have been evaluated by sensory test and physical property of clothes material. To evaluate a thermophysiological comfort. a new evaluation method which measures the physiological response such as electroencephalogram(EEG) is attracting the attention of many people. In the chilly environment, the EEGs in t재 kinds of thermal conditions : with and without clothes were measured. By utilizing the chaos analysis, the behavior of the obtained EEGs were quantiatively expressed in the correlation dimension. As a result, the correlation dimension of the EEGs in being thermal comfortable feeling by putting on clothes, was bigger than the correlation dimension of the EEGs in being cold and discomfort. These results suggest that chaotic analysis of EEG is effective to the quantitative evaluation of thermal esthesis.

  • PDF

하계 항만열환경정보 제공을 위한 열환경 평가 및 예보시스템 구축 (Heat Stress Assessment and the Establishment of a Forecast System to Provide Thermophysiological Indices for Harbor Workers in Summer)

  • 황미경;윤진아;김현수;김영준;임연주;이영미;김영남;윤의경;김유근
    • 한국환경보건학회지
    • /
    • 제42권2호
    • /
    • pp.92-101
    • /
    • 2016
  • Objectives: Outdoor workers are exposed to thermally stressful work environments. In this study, heat stress indices for harbor workers in summer were calculated to evaluate thermal comfort based on a human heat balance model. These indices are Physiological Subjective Temperature (PST), Dehydration Risk (DhR), and Overheating Risk (OhR) according to respective stage of cargo work in a harbor. In addition, we constructed a forecast system to provide heat stress information. Methods: Thermophysiological indices in this study were calculated using the MENEX model (i.e. the human heat balance model), which used as inputs the meteorological parameters, clothing insulation, and metabolic rate for each stage of cargo work in the harbor of Masan over the course of seven days, including a four-day heat wave. The forecast heat stress information constructed for Masan harbor was based on meteorological data supported by the Dong-Nae Forecast from the KMA (Korea Metrological Administration) and other input parameters. Results: According to higher metabolic rate, thermophysiological indices showed a critical level. In particular, PST was evaluated as reaching the 'Very hot' or 'Hot' level during all seven days, despite the heat occurring over only four. It is important in a regard to consider the work environment conditions (i.e. labor intensity and clothing in harbor). On a webpage, the forecast thermophysiological indices show as infographics to be easily understand. This webpage is comprised of indices for both current conditions and the forecast, with brief guidance. Conclusion: Thermophysiological indices show the risk level to health during a heat wave period. Heat stress information could help to protect the health of harbor workers. Further, this study could extend the applicability of these indices to a variety of outdoor workers in consideration of work environments.

고온환경 하에서 착용하는 인체냉각 보조도구로서의 Cooling Vest 연구(1) -Local Cooling에 따른 인체의 온열생리학적 특성- (Efficacy of Cooling Vest for Auxiliary Body Cooling in Hot Environments (1) -Thermophysiological Response of Human Body in Local Cooling-)

  • 권오경;김진아;김태규
    • 한국의류산업학회지
    • /
    • 제2권3호
    • /
    • pp.265-271
    • /
    • 2000
  • Heat stress results in fatigue, a decline in strength, alertness., and mental capacity. The problem is compounded when high humidity exists. To help relieve worker heat stress, many types of cooling units are marketed. While workers may experience some cooling, critical body core temperatures often continue to elevate. This study was designed to find the effects of three kinds of cooling vest with portable frozen gel strips on thermophysiological parameters and on temperature and humidity within clothing. The heart rate, rectal, and skin temperature as well as sweat rate and clothing microclimate were measured during 80 min in 5 healthy males. Inquiries were also made into the subjective rating thermal, humidity comfort, and fatigue sensations. The main findings in our experiments are as follows: (a) Physiological parameters such as rectal temperature was the lowest in garb A1, intermediate in garb A, and the highest in garb A2 throughout the experiment. And mean skin temperature was the lowest in garb A, intermediate in garb A1, and the highest in garb A2; (b) Temperature and humidity within clothing (back) were garb in Al, intermediate in garb A, and the highest in garb A2. But the temperature and humidity within clothing (chest) were garb in A, intermediate in garb A1, and the highest in garb A2; (c) Most participants (4 out of 5 persons) answered that they felt more comfortable and fatigueless in garb A1 than in garb A and A2. It is concluded that local cooling in garb A1 of the upper torso could physiological reduce the thermal strain in participants wearing cooling vest.

  • PDF

면과 친수 가공 폴리에스테르 소재로 된 트레이닝복의 인체 생리 효과 (Effects of Thermophysiological Responses by Trainning Wear Made from Cotton and Hygroscopically Treated Polyester)

  • 정희자;장지혜
    • 대한가정학회지
    • /
    • 제37권12호
    • /
    • pp.193-203
    • /
    • 1999
  • This study was executed to show influence of material and property of sportswear to physiological responses of body and comfort sensation and to supply basic research data about comfortable sportswear Trainning wear was manufactured with cotton(C) and hygroscopically treated polyester material (FP), and its properties of material were measured. Then rectal temperature, skin temperature, heart rate, weight loss, clothing microclimate and subjective sensation was estimated with study of wearing with these sportswear and examined the influence that it got to physiological responses of body and sensation. Health adult men were selected for subjects and executed at climatic chamber of temperature, $20\pm2^{\circ}C and humidity, $60\pm5%$ R.H. Conclusively sportswear of hygroscopically treated polyester is a favorable functional material. So far factor that affect to physiological comfort sensation has been explained mostly by moisture regain but in our experiment, it turned out that air permeability, water absorption velocity and dynamic oater absorption etc. were affecting factors. So according to this result, air permeability and moisture permeability should be considered with transmittance of temperature moisture for development of comfort material.

  • PDF

Thermal Insulation of Protective Clothing Materials in Extreme Cold Conditions

  • Mohamed Zemzem;Stephane Halle;Ludwig Vinches
    • Safety and Health at Work
    • /
    • 제14권1호
    • /
    • pp.107-117
    • /
    • 2023
  • Background: Thermophysiological comfort in a cold environment is mainly ensured by clothing. However, the thermal performance and protective abilities of textile fabrics may be sensitive to extreme environmental conditions. This article evaluated the thermal insulation properties of three technical textile assemblies and determined the influence of environmental parameters (temperature, humidity, and wind speed) on their insulation capacity. Methods: Thermal insulation capacity and air permeability of the assemblies were determined experimentally. A sweating-guarded hotplate apparatus, commonly called the "skin model," based on International Organization for Standardization (ISO) 11092 standard and simulating the heat transfer from the body surface to the environment through clothing material, was adopted for the thermal resistance measurements. Results: It was found that the assemblies lost about 85% of their thermal insulation with increasing wind speed from 0 to 16 km/h. Under certain conditions, values approaching 1 clo have been measured. On the other hand, the results showed that temperature variation in the range (-40℃, 30℃), as well as humidity ratio changes (5 g/kg, 20 g/kg), had a limited influence on the thermal insulation of the studied assemblies. Conclusion: The present study showed that the most important variable impacting the thermal performance and protective abilities of textile fabrics is the wind speed, a parameter not taken into account by ISO 11092.

고온환경 하에서 착용하는 인체냉각 보조도구로서의 Cooling Vest연구(2) - 개발제품의 온열생리학적특성 - (Efficacy of Cooling Vest for Auxiliary Body Cooling in Hot Environments(2) - Comparison in Terms of Thermophysiological Properties Between New Cooling Vest and Standard Cooling Vest -)

  • 권오경;김태규;김진아
    • 한국의류산업학회지
    • /
    • 제2권4호
    • /
    • pp.346-352
    • /
    • 2000
  • The purposes of this study are finding out thermophysiological properties throughout wearing experiment with standard cooling vest as well as providing data in order to design and apply more comfortable cooling vest. To do this study, we produced cooling vest newly. 1. Rectal temperature was ascended approximately from $37.2^{\circ}C$ to $38.05^{\circ}C$ in lab, but wearing cooling vest, the temperature was descended 0.2 while wearing developed product compare with existing product. Mean skin temperature which was showed distribution from $32.8{\sim}36.5^{\circ}C$, it was descended $1.0{\sim}1.1^{\circ}C$, while wearing cooling vest and comparing with existing product, wearing developed product was lower $0.5^{\circ}C$. 2. While wearing developed cooling vest, it was found that they had lower tendency than standard cooling vest. Specifically in case of temperature within clothing (chest) $0.2{\sim}2.0^{\circ}C$ in case of humidity within clothing 2~8%RH. Facts from above we confirmed that clothing microclimate had been improved and space was happened between body and garment in order to control. 3. In subjective sensation, standard cooling vest made negative response during experiment period from participants, but new cooling vest was nearing to comfortable area. It was con finned from above conclusions that wearing developed product is more effective in terms of comfort and reduction of heat stress in situation of working in hot environment.

  • PDF

상반신의 부분별 발한량, 피부온과 주관적 감각 고찰 (The Analysis of the Sweating Rate, Skin Temperature on the Upper Body and Subjective Sensations)

  • 김성숙;김희은
    • 한국의류산업학회지
    • /
    • 제15권6호
    • /
    • pp.993-999
    • /
    • 2013
  • This study aimed to measure the amount of sweating on 12 parts of the upper body using absorption fabric and analyze subjective sensations. The study was conducted with 9 male subjects in climate chamber controled at $30{\pm}0.5^{\circ}C$, and $55{\pm}5%$ RH. The result was that sweating amount of the upper back part was significantly more than upper front part. We assumed that forced convection flow cased by exercise decreased the sweating rate in the front. The skin temperature of upper front body rapidly decreased as soon as exercise starts and gradually increased with cessation of exercise. On the other hand, the skin temperature of palm increased with exercise and showed continuous increasing even exercise stopping all the experimental period. This is caused by thermoregulatory responses through vasodilatation on the peripheral area. Subjective sensations, such as thermal sensation, wet sensation, and thermal comfort showed the highest score at the time of exercise stop. This means the subjects felt more hot, wet, and uncomfortable after exercise stopped. Bur after wiping of sweat, subjective sensation scores were recovered rapidly. The present study has provided more detailed information on the upper body sweat distribution than previously available, which can be used in clothing design, thermo-physiological modeling, and thermal manikin design. We also think that results of the present study will play an important role in making the sweat distribution map.

Effects of Clothing Material Dyed with Astringent Persimmon Extract upon Exercise-Induced Thermal Strain and Sensory Responses in a Warm Environment

  • Park, Shin-Jung;Shin, Hye-Sun;Chung, Hee-Chung
    • International Journal of Human Ecology
    • /
    • 제16권2호
    • /
    • pp.1-9
    • /
    • 2015
  • This study investigated the effects of persimmon-dyed clothing materials upon thermophysiological responses and subjective comfort sensations during exercise and rest in a warm environment. Six healthy, untrained women participated in two separate testing sessions, with cotton materials dyed with astringent persimmon extract (DC) and undyed cotton materials (UDC). The physical characteristics associated with heat and moisture transfer were improved in DC; also, stiffness, anti-drapery stiffness and crispness in the primary hand values were higher in DC. The experimental protocol consisted of a 10-min rest, 15-min exercise on a treadmill (at ${7km{\cdot}h^{-1}}$) and 25-min recovery at $28{\pm}0.2^{\circ}C$ and $50{\pm}3%\;RH$. The results were as follows: When wearing DC rather than UDC, mean body temperature, heart rate, heat storage and body mass loss were significantly lower during the whole experimental period. Clothing microclimate temperature showed different profiles between the two clothing materials, being lower with DC than UDC during the first half of exercise and the second half of recovery. Clothing microclimate humidity was significantly lower with DC than UDC during the whole experimental period. When wearing UDC, subjects felt significantly warmer and less comfortable during exercise, and sensed greater humidity during exercise and recovery. These results suggest that eco-friendly clothing materials dyed with astringent persimmon extract can reduce exercise-induced heat load and improve subjective sensations when exercising and resting in a warm environment, due to greater heat dissipation from the body to the outside environment compared with undyed clothing materials.