• Title/Summary/Keyword: Thermomechanical treatment

Search Result 78, Processing Time 0.026 seconds

The Beating Properties of High Yield Pulp Treated with Ozone(II) (오존처리 고수율 펄프의 고해 특성(II) -고해 후 발생된 미세섬유의 리그닌 분포-)

  • 윤승락
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.4
    • /
    • pp.22-29
    • /
    • 2002
  • This research was conducted to investigate the morphological characteristics of fine fibers produced during beating process of high yield pulp treated with ozone and the distribution of lignin in the produced fine fibers. Thermomechanical(TMP) pulp and chemithermomechanical(CTMP) pulp of spruce and CTMP of white birch were beaten to reach 200$m\ell$ CSF, and then the fine fibers were observed using ultraviolet microscope. The fine fibers produced from TMP and CTMP of spruce using treated with ozone for 15 minutes were fragments of fiber surfaces or cell corners, and most of them contained lignin. However, lignin was not observed in the fibers after 15 minutes of ozone treatment. The fine fibers produced from CTMP of white birch were broken pieces or fragments of fiber surfaces or cell corners. The lignin was observed in the fibers until 5min of ozone treatment but no lignin was observed after 5 minutes of ozone treatment. Different morphological characteristics of TMP and CTMP explained both the different morphological characteristics and the distribution of lignin observed in the fine fibers produced from the beating process of TMP and CTMP treated with ozone.

A Study on Cu-Fe Multifilamentary Composites Produced by in situ Process (in situ법(法)에 의한 Cu-Fe계(系) 다섬유상(多纖維狀) 복합재료제조(複合材料製造)에 관한 연구(硏究))

  • Shur, S.J.;Park, H.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.2
    • /
    • pp.9-18
    • /
    • 1991
  • Among the many maunfactured processes of producing multi filamentary composites, in situ process is widely used owing tv its simplicity and easyness of mass production. In this study, the mechanical and electromagnetic properties of Cu-Fe composite materials was investigated. The tensile strength of the Cu-Fe wires increased as the Fe content and reduction ratio were increased. The Cu-30 wt%Fe composites had the best properties in terms of figure merits compared to the other Cu-Fe composites made in this study or the commercially manufactured 6/1 ACSR cables of Cu cable. The coercivity was decreased by increasing Fe content, but the squareness was increased greatly. As increasing reduction ratio, the coercivity and squareness increased up to the maximum points, and then decreased. For example, the maximum values were obtained at $0.09mm{\phi}$ for Cu-30 wt%Fe composites and at $0.066mm{\phi}$ for Cu-45 wt%Fe composites. The magnetic property of Cu-Fe wires produced by precipitation treatment was higher than that of Cu-Fe wires produced by thermomechanical treatment. By annealing Cu-Fe wires after drawing process, the coercivity, remanence and squareness were improved.

  • PDF

Characterization of Colorless and Transparent Polyimide Films Synthesized with Various Amine Monomers (다양한 아민 단량체로 합성한 무색투명 폴리이미드 필름 특성)

  • Choi, Il-Hwan;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.480-484
    • /
    • 2010
  • A series of poly(amic acid)s(PAAs) was prepared by reacting 4,4'-(4,4'-isopropylidenediphenoxy) bis(phthalic anhydride)(BPADA) as the anhydride monomer and 2,2'-bis(trifluoromethyl) benzidine (TFB), bis(3-aminophenyl)sulfone (APS), 4,4'-methylenebis-(2-methylcyclohexylamine) (MMCA), or bis[4-(3-aminophenoxy) phenyl] sulfone (BAPS) as the amine monomer with 5 mol% melamine in N,N-dimethylacetamide (DMAc). Colorless and transparent polyimide (PI) films were obtained by casting the PAAs at various heat treatment temperatures. The thermo-mechanical properties and optical transparency of the PI films were investigated. The thermal properties of the PI films were examined using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and thermomechanical analysis (TMA), and their optical transparency were measured by spectrophotometry. The coefficient of thermal expansion (CTE) and yellow index (YI) values of all samples were in the range of $48.53-64.24ppm/^{\circ}C$ and < 3.0, respectively.

Fabrication of Superconducting Joints between 61 Filaments of BSCCO 2223 Tapes (61심 BSCCO 2223 고온초전도 선재의 접합부 제조)

  • 김철진;박성창;유재무
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.2
    • /
    • pp.137-144
    • /
    • 1998
  • High-temperature superconducting joints between 61 filaments of Bi-2223 tapes were fabricated by chem-ical corrosion and repeated thermomechanical process. The silver sheath of the superconducting tape was chemically removed using chemical etchant(NH4OH:H2O2=1:1) from one side of each tape without altering the form of lap joint. The joined region was formed by uniaxial pressing and a series of thermomechanical process and then subjected to properties measurement and microstructural analysis. The critical current(Ic) variation and I-V characteristics along the joint were mesured with several configuration of proble points. Ic value of the transition region of the joint inthe multifilament tape which limit the total current carring capacity of the superconducting tape was higher than that of monofilament tape. But the transition ex-ponent n-value of the multi-filament tape was lower than that of monofilament wire due to the interaction of the individual superconducting core of the multi-filament. The critical current through the joint area was improved by respeated press and reaction annealing treatment.

  • PDF

Investigation of Residual Stress Characteristics of Specimen Fabricated by DED and Quenching Processes Using Thermo-mechanical Analysis (열-기계 연계 해석을 이용한 에너지 제어 용착 및 담금질 공정으로 제작된 시편의 잔류응력 특성 분석)

  • Hwang, An-Jae;Lee, Kwang-Kyu;Ahn, Dong-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.113-122
    • /
    • 2021
  • Complicated residual stress distributions occur in the vicinity of a deposited region via directed energy deposition (DED) process owing to the rapid heating and cooling cycle of the deposited region and the substrate. The residual stress can cause defects and premature failure in the vicinity of the deposited region. Several heat treatment technologies have been extensively researched and applied on the part deposited by the DED process to relieve the residual stress. The aim of this study was to investigate the residual stress characteristics of a specimen fabricated by DED and a quenching process using thermomechanical analyses. A coupled thermomechanical analysis technique was adopted to predict the residual stress distribution in the vicinity of the deposited region subsequent to the quenching step. The results of the finite element (FE) analyses for the deposition and the cooling measures show that the residual stress in the vicinity of the deposited region significantly increases after the completion of the elastic recovery. The results of the FE analyses for the heating and quenching stages further indicate that the residual stress in the vicinity of the deposited region remarkably increases at the initial stage of quenching. In addition, it is observed that the residual stress for quenching is lesser than that after the elastic recovery, irrespective of the deposited material.

Interfacial Shear Strength and Thermal Properties of Electron Beam-Treated Henequen Fibers Reinforced Unsaturated Polyester Composites

  • Pang Yansong;Cho Donghwan;Han Seong Ok;Park Won Ho
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.453-459
    • /
    • 2005
  • Natural fiber henequen/unsaturated polyester (UPE) composites were fabricated by means of a compression molding technique using chopped henequen fibers treated at various electron beam (EB) dosages. The interfacial shear strength (IFSS), dynamic mechanical properties, and thermal expansion behavior were investigated through a single fiber microbonding test, fractographic observation, dynamic mechanical analysis, and thermomechanical analysis, respectively. The results indicated that the interfacial and dynamic mechanical properties significantly depended on the level of the EB treatment irradiated onto the henequen fiber surfaces. The effect of EB treatment on the IFSS, storage modulus and fracture surface of the henequen/UPE composites agreed with each other. The results of this study also suggested that the modification of henequen fiber surfaces at 10 kGy EB is the most effective for improving the interfacial properties of the henequen/UPE composites.

Creep Properties of Grain Coarsened ODS MA NiAl (결정립 조대화된 기계적 합금화 ODS NiAl의 Creep 성질)

  • Eo, Sun-Cheol;Seo, Seong-Jae
    • Korean Journal of Materials Research
    • /
    • v.7 no.11
    • /
    • pp.942-950
    • /
    • 1997
  • NiAI기 산화물 분산강화(Oxide Dispersion Strengthende:ODS)합금을 기계적 합금화 (Mechanical Alloying: MA)방법으로 제조하였으며, 열간압축방법으로 성형하였다. 연이어 단순항온처리에 의한 정상결정립성장과 특성조건에서의 thermomechanical treatment 에 의한 이차재결정화를 유도하였다. 결정립 조대화된 ODSD MA NiAI의 creep 성질 및 이에 조대화된 미세조직은 creep 성질이 저하된 반면, 이차재결정화된 MA NiAI의 creep성질은 크게 향상되었다. 이 creep 성질의 향상은 이차재결정화의 특성인 급격한 결정립의 조대화, 분산상의 성장억제 및 grain aspect ratio의 증가에 기인한 것으로 사료되었다. 이차재결정화된 ODS MA NiAI의 creep또는 glide controlled dislocation creep임을 제시하지만, 전체 creep속도가 결정립 크기 및 grain aspect ratio의 영향을 크게 받은 것을 볼 때, 결정립계 미끄럼기구가 주 creep 기구와 조합되어 MA NiAI의 전체 creep기구에 영향을 준 것으로 추정할 수 있었다.

  • PDF

Effect of Intermediate Annealing on the Texture and Formability in Ferritic Stainless Steel Sheet (페라이트 스테인리스 강판의 집합조직과 성형성에 미치는 중간열처리의 영향)

  • Cho S. Y.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.17-20
    • /
    • 2000
  • In order to improve the sheet formability of the ferritic stainless steel, the through-thickness textures of the recrystallized sample was modified by means of a thermomechanical treatment. An annealing process between the cold rolling reductions modified the preferred orientations throughout the thickness, which resulted in the modification of the final cold rolling texture as well as the final recrystallization texture. With the help of the modification of the recrystallization texture by the intermediate annealing, improvement of the sheet formability, i.e. an increase of the Lankford value.

  • PDF

Fabrication of superconducting Joints Between PIT Processed BSCCO 2223 Tapes by Single and Multiple Press & reaction Annealing (고온초전도 BSCCO 2223 선재간의 초전도 접합부 제조연구)

  • Yu, Jae-Mu;Go, Jae-Ung;Jeong, Hyeong-Sik
    • 연구논문집
    • /
    • s.27
    • /
    • pp.175-181
    • /
    • 1997
  • Superconducting joints between Bi-2223/Ag tapes are fabricated by a press & reaction anneal and a multiple press & anneal. The silver sheath was mechanically or chemically removed from one side of each tape without altering the superconducting core. The exposed superconducting core of the two tapes were brought into contact and pressed so as to form a lap joint. The joined tapes were then subjected to a series of different thermomechanical treatments to achieve optimum heat treatment condition. The result from transport measurements shows that critical current ($I_c$) transmitting through joined area reaches 9A, approximately 60% of the current capacity of the tapes themselves. The critical current through joined area was improved by repeated press and reaction annealing. Measurements of the current-voltage relationship were made with several configuration of the voltage probes to characterize the critical current variation and I-V curve along the joint. Also discussed are microstructural aspects of the superconducting joint.

  • PDF

A Study on Hot Workability and Microstructural Development of 7075 Al Alloy (7075Al 합금의 고온소성 및 조직제어에 관한 연구)

  • 고병철;전정식;이현민;최규창;유연철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.114-123
    • /
    • 1995
  • Hot workability and microstructural development of 7075Al alloy were studied by hot torsion test. With decling temperature from 440$^{\circ}C$ to 340$^{\circ}C$, and strain rate ranges form 5 ${\times}$10-3/sec to 5 ${\times}$10-1/sec , flow stress and microstructural development were analyzed . The hot resoration mechanism was found to be dynamic recrystalization (DRX) form the analysis of the flow curves and the microstructures. In multistage deformation with decreasing temperature grain refinement was obtained effectively compared to conventional thermomechanical treatment (TMT) process. The strain of the 1st stage deformation at 440$^{\circ}C$ was found to play an important role for the next stage deformation behavior at 380$^{\circ}C$.

  • PDF