• Title/Summary/Keyword: Thermoelectric Coefficient

Search Result 165, Processing Time 0.023 seconds

The Thermoelectric Properties of p-type SiGe Alloys Prepared by RF Induction Furnace (고주파 진공유도로로 제작한 p형 SiGe 합금의 열전변환물성)

  • 이용주;배철훈
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.432-437
    • /
    • 2000
  • Thermoelectric properties of p-type SiGe alloys prepared by a RF inductive furnace were investigated. Non-doped Si80Ge20 alloys were fabricated by control of the quantity of volatile Ge. The carrier of p-type SiGe alloy was controlled by B-doping. B doped p-type SiGe alloys were synthesized by melting the mixture of Ge and Si containing B. The effects of sintering/annealing conditions and compaction pressure on thermoelectric properties (electrical conductivity and Seebeck coefficient) were investigated. For nondoped SiGe alloys, electrical conductivity increased with increasing temperatures and Seebeck coefficient was measured negative showing a typical n-type semiconductivity. On the other hand, B-doped SiGe alloys exhibited positive Seebeck coefficient and their electrical conductivity decreased with increasing temperatures. Thermoelectric properties were more sensitive to compaction pressure than annealing time. The highest power factor obtained in this work was 8.89${\times}$10-6J/cm$.$K2$.$s for 1 at% B-doped SiGe alloy.

  • PDF

Experimental Study of Standalone Cooling and Heating System using Thermoelectric Element for Vehicles (열전소자를 이용한 차량용 독립 냉난방시스템에 대한 실험적 연구)

  • Lee, Dae-Woong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.8
    • /
    • pp.375-380
    • /
    • 2014
  • The purpose of this paper is to investigate the cooling and heating performance of a standalone-type thermoelectric system equipped with a thermoelectric module. The system consists of a blower and two thermoelectric modules with a fin, which is soldered onto both sides of the thermoelectric module and a courtesy light. The thermoelectric system experiment is conducted with the intake voltage to find the optimum cooling and heating performance of each. The results showed that the cooling capacity and coefficient of performance (COP) were 22 W and 0.31, and the heating capacity and COP were 147 W and 1.1, respectively. In the vehicle cooling and heating performance test in a climate wind tunnel, the results showed that the standalone thermoelectric system's cooling performance was slightly better than the base system; and the heating performance of the standalone thermoelectric system was $54.1^{\circ}C$ and the COP was 1.3, compared to the base system.

Computational Simulations of Thermoelectric Transport Properties

  • Ryu, Byungki;Oh, Min-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.273-281
    • /
    • 2016
  • This review examines computational simulations of thermoelectric properties, such as electrical conductivity, Seebeck coefficient, and thermal conductivity. With increasing computing power and the development of several efficient simulation codes for electronic structure and transport properties calculations, we can evaluate all the thermoelectric properties within the first-principles calculations with the relaxation time approximation. This review presents the basic principles of electrical and thermal transport equations and how they evaluate properties from the first-principles calculations. As a model case, this review presents results on $Bi_2Te_3$ and Si. Even though there is still an unsolved parameter such as the relaxation time, the effectiveness of the computational simulations on the transport properties will provide much help to experimental scientist researching novel thermoelectric materials.

A Study on the Development of Adsorption-Desorption Systems Using Thermoelectric Devices for Improved Energy Efficiency (에너지 효율 향상을 위한 열전소자를 이용한 흡·탈착 시스템 개발 연구)

  • Jik-Su Yu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.4_2
    • /
    • pp.981-989
    • /
    • 2024
  • In recent years, there has been a growing focus on preserving the global environment and utilizing resources efficiently. The significance of energy conservation has led to the development of systems that recycle waste heat from factories and use eco-friendly refrigerants. This study aims to enhance the performance of adsorption-desorption systems using thermoelectric devices, which are known for their ability to convert temperature differences into electrical energy. The research focuses on improving the efficiency of these systems by integrating thermoelectric modules to cool the adsorption side and heat the desorption side, thus enhancing overall system performance. The experiments utilized a typical thermoelectric device and silica gel as the adsorbent. Key experimental parameters included varying the inlet air temperature and relative humidity on the desorption side. The results indicated that increasing the relative humidity of the inlet air on the desorption side significantly enhanced the overall mass transfer coefficient while reducing the completion time of the process. Similarly, higher inlet air temperatures led to an increase in the mass transfer coefficient and a decrease in process completion time. These findings suggest that optimizing the operational conditions of thermoelectric devices can substantially improve the performance of adsorption-desorption systems, offering potential benefits for applications in ventilation systems and other related fields.

Optimization of Thermoelectric Elements for Thermoelectric Coolers (열전냉동기용 열전요소의 최적화)

  • Jeong, Eun-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.5
    • /
    • pp.409-414
    • /
    • 2012
  • A theoretical investigation to optimize thermoelectric elements for thermoelectric coolers was performed using a new one-dimensional analytic model. Mathematical expressions for the optimum current and the optimum length of a thermoelectric element, which maximize the coefficient of performance of thermoelectric coolers, were obtained. The optimum current is expressed in terms of the cooling load for a thermoelectric element, the hot and cold side temperatures and thermoelectric properties, but not the length of a thermoelectric element. The optimum current is proportional to the cooling load and decreases as the temperature difference between the hot and cold sides decreases. It is also shown that the optimum length of a thermoelectric element decreases as the cooling load increases.

A Study on the Performance of Thermoelectric Module and Thermoelectric Cooling System (열전소자 및 열전냉각장치의 성능에 관한 연구)

  • 유성연;홍정표;심우섭
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.62-69
    • /
    • 2004
  • Thermoelectric module is a device that can produce cooling in a direct manner using the electrical energy. The purpose of this study is to investigate the performance of thermoelectric module and cooling system equipped with the thermoelectric module. The performance of a thermoelectric module is estimated using two methods; theoretical analysis based on one-dimensional energy equations and experimental tests using heat source, heat sink and brass conduction extenders. For the thermoelectric cooling system, the temperatures in the chamber are recorded and then compared with those of lumped system analysis. The results show that the cooling capacity and COP of the thermoelectric module increases as the temperature difference between hot and cold surface decreases, and there is particular current at which cooling capacity reaches its maximum value. The experimental results for the thermoelectric cooling system are similar to those of lumped system analysis.

Thickness and Annealing Effects on the Thermoelectric Properties of P-type Bi0.5Sb1.5Te3 Thin Films (P형 Bi0.5Sb1.5Te3 박막의 열전 특성에 미치는 두께 및 어닐링 효과)

  • Kim Il-Ho;Jang Kyug-Wook
    • Korean Journal of Materials Research
    • /
    • v.14 no.1
    • /
    • pp.41-45
    • /
    • 2004
  • P-type $Bi_{0.5}$$Sb_{1.5}$ $Te_3$ thin films were deposited by the flash evaporation technique, and their thermoelectric properties and electronic transport parameters were investigated. The effective mean free path model was adopted to examine the thickness effect on the thermoelectric properties. Annealing effects on the carrier concentration and mobility were also studied, and their variations were analyzed in conjunction with the antisite defects. Seebeck coefficient and electrical resistivity versus inverse thickness showed a linear relationship, and the effective mean free path was found to be 3150$\AA$. No phase transformation and composition change were observed after annealing treatment, but carrier mobility increased due to grain growth. Carrier concentration decreased considerably due to reduction of the antisite defects, so that electrical conductivity decreased and Seebeck coefficient increased. When annealed at 473 K for 1 hr, Seebeck coefficient and electrical conductivity were $160\mu$V/K and 610 $W^{-1}$ $cm^{ -1}$, respectively. Therefore, the thermoelectric quality factor were also enhanced to be $16\mu$W/cm $K^2$.>.

Thermoelectric Conversion Characteristics of SiC Ceramics Fabricated from 6H-SiC Powder (6H-SiC로부터 제작한 SiC 세라믹스의 열전변환 특성)

  • ;Kunihito Koumoto;Hiroaki Yanagida
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.3
    • /
    • pp.412-422
    • /
    • 1990
  • Porous SiC ceramics were proposed to be promising materials for high-temperature thermoelectric energy conversion. Throughthe thermoelectric property measurements and microstructure observations on the porous alpha SiC and the mixture of $\alpha$-and $\beta$-SiC, it was experimentally clarified that elimination of stacking faults and twin boundaries by grain growth is effective to increase the seebeck coefficient and increasing content of $\alpha$-SiC gives rise to lower electrical conductivity. Furthermore, the effects of additives on the thermoelectric properties of 6H-SiC ceramics were also studied. The electrical conductivity and the seebeck coefficient were measured at 35$0^{\circ}C$ to 105$0^{\circ}C$ in argon atmospehre. The thermoelectric conversion efficiency of $\alpha$-SiC ceramics was lower than that of $\beta$-SiC ceramics. The phase homogeneity would be needed to improve the seebeck coefficient and electrical conductivity decreased with increasing the content of $\alpha$-phase. In the case of B addition, XRD analysis showed that the phase transformation did not occur during sintering. On the other hand, AlN addiiton enhanced the reverse phase transformation from 6H-SiC to 4H-SiC, and this phenomenon had a great effect upon the electrical conductivity.

  • PDF

In-Plane Thermoelectric Properties of InGaAlAs Thin Film with Embedded ErAs Nanoparticles (ErAs 나노입자가 첨가된 InGaAlAs 박막의 평면정렬방향으로의 열전특성)

  • Lee, Yong-Joong
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.456-460
    • /
    • 2011
  • Microelectromechanical systems (MEMS)-fabricated suspended devices were used to measure the in-plane electrical conductivity, Seebeck coefficient, and thermal conductivity of 304 nm and 516 nm thick InGaAlAs films with 0.3% ErAs nanoparticle inclusions by volume. The suspended device allows comprehensive thermoelectric property measurements from a single thin film or nanowire sample. Both thin film samples have identical material compositions and the sole difference is in the sample thickness. The measured Seebeck coefficient, electrical conductivity, and thermal conductivity were all larger in magnitude for the thicker sample. While the relative change in values was dependent on the temperature, the thermal conductivity demonstrated the largest decrease for the thinner sample in the measurement temperature range of 325 K to 425 K. This could be a result of the increased phonon scattering due to the surface defects and included ErAs nanoparticles. Similar to the results from other material systems, the combination of the measured data resulted in higher values of the thermoelectric figure of merit (ZT) for the thinner sample; this result supports the theory that the reduced dimensionality, such as in twodimensional thin films or one-dimensional nanowires, can enhance the thermoelectric figure of merit compared with bulk threedimensional materials. The results strengthen and provide a possible direction in locating and optimizing thermoelectric materials for energy applications.

Thermoelectric and Transport Properties of FeV1-xTixSb Half-Heusler System Synthesized by Controlled Mechanical Alloying Process

  • Hasan, Rahidul;Ur, Soon-Chul
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.725-732
    • /
    • 2018
  • The thermoelectric and transport properties of Ti-doped FeVSb half-Heusler alloys were studied in this study. $FeV_{1-x}Ti_xSb$ (0.1 < x < 0.5) half-Heusler alloys were synthesized by mechanical alloying process and subsequent vacuum hot pressing. After vacuum hot pressing, a near singe phase with a small fraction of second phase was obtained in this experiment. Investigation of microstructure revealed that both grain and particle sizes were decreased on doping which would influence on thermal conductivity. No foreign elements pick up from the vial was seen during milling process. Thermoelectric properties were investigated as a function of temperature and doping level. The absolute value of Seebeck coefficient showed transition from negative to positive with increasing doping concentrations ($x{\geq}0.3$). Electrical conductivity, Seebeck coefficient and power factor increased with the increasing amount of Ti contents. The lattice thermal conductivity decreased considerably, possibly due to the mass disorder and grain boundary scattering. All of these turned out to increase in power factor significantly. As a result, the thermoelectric figure of merit increased comprehensively with Ti doping for this experiment, resulting in maximum thermoelectric figure of merit for $FeV_{0.7}Ti_{0.3}Sb$ at 658 K.